Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties of the liquid/solid interface. Here we consider, using molecular dynamics simulations, the electric contribution to friction for charged surfaces, and the induced modification of the hydrodynamic boundary condition at the confining boundary. The consequences of liquid slippage for electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within the electric double layer, are explored. Strong amplification of electro-osmotic effects is revealed, and the nontrivial effect of surface charge is discussed. This work allows us to reconsider existing experimental data, concerning ζ potentials of hydrophobic surfaces and suggests the possibility to generate “giant” electro-osmotic and electrophoretic effects, with direct applications in microfluidics.

1.
H.
Stone
,
A.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
J.-L.
Barrat
and
L.
Bocquet
,
Phys. Rev. Lett.
82
,
4671
(
1999
).
3.
P.
Joseph
and
P.
Tabeling
,
Phys. Rev. E
71
,
035303
(
2005
).
4.
T.
Schmatko
,
H.
Hervet
, and
L.
Léger
,
Phys. Rev. Lett.
94
,
244501
(
2005
).
5.
C.
Cottin-Bizonne
,
B.
Cross
,
A.
Steinberger
, and
E.
Charlaix
,
Phys. Rev. Lett.
94
,
056102
(
2005
).
6.
O. I.
Vinogradova
and
G. E.
Yakubov
,
Phys. Rev. E
73
,
045302
(
2006
).
7.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
, in
Handbook of Experimental Fluid Dynamics
edited by
C. T. J.
Foss
and
A.
Yarin
(
Springer
,
New York
,
2005
), Chap. 15;
8.
L.
Joly
,
C.
Ybert
, and
L.
Bocquet
,
Phys. Rev. Lett.
96
,
046101
(
2006
).
9.
S.
Granick
,
Y.
Zhu
, and
L.
Hyunjung
,
Nat. Mater.
2
,
221
(
2003
).
10.
Y. W.
Kim
and
R. R.
Netz
,
Europhys. Lett.
72
,
837
(
2005
).
11.
Y. W.
Kim
and
R. R.
Netz
,
J. Chem. Phys.
124
,
114709
(
2006
).
12.
R. R.
Netz
,
Curr. Opin. Colloid Interface Sci.
9
,
192
(
2004
).
13.
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
,
Phys. Rev. Lett.
93
,
257805
(
2004
).
14.
R.
Qiao
and
N. R.
Aluru
,
Phys. Rev. Lett.
92
,
198301
(
2004
).
15.
J. F.
Dufrêche
,
V.
Marry
,
N.
Malikova
, and
P.
Turq
,
J. Mol. Liq.
118
,
145
(
2005
).
16.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science
(
Academic
,
London
,
1995
), Vol.
2
.
17.
D.
Andelman
, in
Membranes: Their Structure and Conformations
, edited by
R.
Lipowsky
and
E.
Sackmann
(
Elsevier
,
New York
,
1999
).
18.
19.
R. J.
Hunter
,
Zeta Potential in Colloid Science
(
Academic
,
London
,
1981
).
20.
J.-L.
Barrat
and
L.
Bocquet
,
Faraday Discuss.
112
,
119
(
1999
).
21.
L.
Bocquet
and
J.-L.
Barrat
,
Phys. Rev. E
49
,
3079
(
1994
).
22.
M.
Bazant
and
T.
Squires
,
Phys. Rev. Lett.
92
,
066101
(
2004
).
23.
24.
N. V.
Churaev
,
J.
Ralston
,
I. P.
Sergeeva
, and
V. D.
Sobolev
,
Adv. Colloid Interface Sci.
96
,
265
(
2002
).
25.
E.
Chibowski
and
A.
Waksmundzki
,
J. Colloid Interface Sci.
66
,
213
(
1978
).
26.
J.
Laskowski
and
J. A.
Kitchener
,
J. Colloid Interface Sci.
29
,
670
(
1969
).
27.
H. C.
Parreira
and
J. H.
Schulman
,
Adv. Chem. Ser.
33
,
160
(
1961
).
28.
F.
Ozon
,
J.-M.
di Meglio
, and
J.-F.
Joanny
,
Eur. Phys. J. E
8
,
321
(
2002
).
29.
R.
Schweiss
,
P. B.
Welzel
,
C.
Werner
, and
W.
Knoll
,
Langmuir
17
,
4304
(
2001
).
30.
P. J.
Scales
,
F.
Grieser
,
T. W.
Healy
,
L. R.
White
, and
D.
Chan
,
Langmuir
8
,
965
(
1992
).
31.
K.
Hu
and
A. J.
Bard
,
Langmuir
13
,
5114
(
1997
).
32.
H. J.
Kreuzer
,
R. L. C.
Wang
, and
M.
Grunze
,
J. Am. Chem. Soc.
125
,
8384
(
2003
).
33.
R.
Schasfoort
,
S.
Schlautmann
,
J.
Hendrikse
, and
A.
van den Berg
,
Science
286
,
942
(
1999
).
34.
M.
von Smoluchowski
,
Handbuch der Electrizit und des Magnetismus
(
Graetz
,
Leipzig
,
1921
), Vol.
II
.
35.
D.
Einzel
,
P.
Panzer
, and
M.
Liu
,
Phys. Rev. Lett.
64
,
2269
(
1990
).
36.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 6th ed. (
Academic
,
2000
).
37.
R. J.
Hunter
,
Foundations of Colloid Science
, 2nd ed. (
Oxford University Press
,
Oxford
,
2001
).
38.
G.
Weisbuch
and
M.
Guéron
,
J. Phys. (Paris)
44
,
251
(
1983
).
39.
40.
Y.
Levin
,
E.
Trizac
, and
L.
Bocquet
,
J. Phys.: Condens. Matter
15
,
S3523
(
2003
).
41.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
42.
R. W.
O’Brien
and
L.
White
,
J. Chem. Soc., Faraday Trans. 2
74
,
1607
(
1978
).
43.
R. W.
O’Brien
,
J. Colloid Interface Sci.
92
,
204
(
1983
).
44.

We have used the MD code LAMMPS 2001 by S. J. Plimpton, (Ref. 41) (available at http://www.cs.sandia.gov/∼sjplimp/lammps.html).

45.

A possible reason is that for such high charges, the pure electric contribution FES2 cannot be neglected, which leads to a decrease of b as observed in Fig. 5.

46.

This hypothesis is reasonable for most of the particles in water, but is not necessary: O’Brien and White have shown that the mobility is independent of the particle permittivity (Ref. 42) (using a no-slip boundary condition).

47.

This hypothesis can be relaxed: O’Brien (Ref. 43) gave the complete solution (with a no-slip boundary condition).

48.

This approximation corresponds to neglecting terms of order O(1(κa)2).

You do not currently have access to this content.