The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al [Science299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H2O16, H2O17, H2O18, and D2O16, to better than 1cm1 on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed.

1.
G. S.
Kedziora
and
I.
Shavitt
,
J. Chem. Phys.
109
,
5547
(
1997
).
2.
A. G.
Császár
and
I. M.
Mills
,
Spectrochim. Acta, Part A
53
,
1101
(
1997
).
3.
H.
Partridge
and
D. W.
Schwenke
,
J. Chem. Phys.
106
,
4618
(
1997
).
4.
O. L.
Polyansky
,
A. G.
Császár
,
S. V.
Shirin
,
N. F.
Zobov
,
P.
Barletta
,
J.
Tennyson
,
D. W.
Schwenke
, and
P. J.
Knowles
,
Science
299
,
539
(
2003
).
5.
M. G.
Bucknell
and
N. C.
Handy
,
Mol. Mater.
28
,
777
(
1974
).
6.
R. J.
Bartlett
,
I.
Shavitt
, and
G. D.
Purvis
,
J. Chem. Phys.
71
,
281
(
1979
).
7.
P. J.
Knowles
,
G. J.
Sexton
, and
N. C.
Handy
,
Chem. Phys.
72
,
337
(
1982
).
8.
J. M. L.
Martin
,
J. P.
François
, and
R.
Gijbels
,
J. Chem. Phys.
96
,
7633
(
1992
).
9.
G.
Czakó
,
T.
Furtenbacher
,
A. G.
Császár
, and
V.
Szalay
,
Mol. Phys.
102
,
2411
(
2004
).
10.
J.
Tennyson
,
P.
Barletta
,
M. A.
Kostin
,
O. L.
Polyansky
, and
N. F.
Zobov
,
Spectrochim. Acta, Part A
58
,
663
(
2002
).
11.
A. G.
Császár
,
G.
Czakó
,
T.
Furtenbacher
,
J.
Tennyson
,
V.
Szalay
,
S. V.
Shirin
,
N. F.
Zobov
, and
O. L.
Polyansky
,
J. Chem. Phys.
122
,
214305
(
2005
).
12.
See EPAPS Document No. E-JCPSA6-125-303643 for electron versions of all the potential energy surfaces as FORTRAN programs. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
13.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
14.

The (aug-)cc-pVnZ basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830.

15.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
16.
S.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
17.
H.-J.
Werner
and
P. J.
Knowles
, MOLPRO (version 2002.1) is a package of ab initio electronic structure programs.
18.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
).
19.
A. G.
Császár
,
J. S.
Kain
,
O. L.
Polyansky
,
N. F.
Zobov
, and
J.
Tennyson
,
Chem. Phys. Lett.
293
,
317
(
1998
);
A. G.
Császár
,
J. S.
Kain
,
O. L.
Polyansky
,
N. F.
Zobov
, and
J.
Tennyson
,
Chem. Phys. Lett.
312
,
613
(E) (
1999
).
20.
H. M.
Quiney
,
P.
Barletta
,
G.
Tarczay
,
A. G.
Császár
,
O. L.
Polyansky
, and
J.
Tennyson
,
Chem. Phys. Lett.
344
,
413
(
2001
).
21.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
 et al, ACESII Mainz-Austin-Budapest version;
MOLECULE (
J.
Almlöf
and
P. R.
Taylor
);
PROPS (
P. R.
Taylor
);
ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jorgensen
, and
J.
Olsen
).
22.
DALTON, a molecular electronic structure program, Release 2.0 (
2005
); see http://www.kjemi.uio.no/software/dalton/dalton.html
23.
I. P.
Grant
and
H. M.
Quiney
,
Int. J. Quantum Chem.
80
,
283
(
2000
).
24.
P.
Pyykkö
,
K. G.
Dyall
,
A. G.
Császár
,
G.
Tarczay
,
O. L.
Polyansky
, and
J.
Tennyson
,
Phys. Rev. A
63
,
024502
(
2001
).
25.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
26.
For the current version of the program, see http://www.mrcc.hu
27.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
28.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
 et al, CCLUMBUS, an ab initio electronic structure program, Release 5.9.1 (
2006
).
29.
E. F.
Valeev
and
C. D.
Sherrill
,
J. Chem. Phys.
118
,
3921
(
2003
).
30.
T. D.
Crawford
,
C. D.
Sherrill
,
E. F.
Valeev
 et al, PSI3 (version 3.2) is a package of ab initio electronic structure programs.
31.
C. D.
Sherrill
and
H. F.
Schaefer
 III
,
Adv. Quantum Chem.
34
,
143
(
1999
).
32.
J.
Olsen
,
Chem. Phys. Lett.
169
,
463
(
1990
).
33.
J.
Olsen
,
J. Chem. Phys.
89
,
2185
(
1988
).
34.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surján
,
J. Chem. Phys.
117
,
980
(
2002
).
35.
A. G.
Császár
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
,
Chichester
,
2000
), pp.
15
68
.
36.
P. G.
Szalay
and
R. J.
Bartlett
,
Chem. Phys. Lett.
214
,
481
(
1993
).
37.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
38.
W.
Klopper
,
K. L.
Bak
,
P.
Jorgensen
,
J.
Olsen
, and
T.
Helgaker
,
J. Phys. B
32
,
R103
(
1999
).
39.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
108
,
9751
(
1998
).
40.
E. F.
Valeev
,
W. D.
Allen
,
H. F.
Schaefer
 III
, and
A. G.
Császár
,
J. Chem. Phys.
114
,
2875
(
2001
).
41.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
42.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
43.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
44.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2004
).
45.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
46.

Our tests included basis sets up to aug-cc-pV6Z, significantly larger than those used in Ref. 3.

47.
R. D.
Cowan
and
D. C.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
48.
P.
Pyykkö
,
Adv. Quantum Chem.
11
,
353
(
1978
).
49.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
, and
H. M.
Quiney
,
Mol. Phys.
99
,
1768
(
2001
).
50.
H. M.
Quiney
,
H.
Skanne
, and
I. P.
Grant
,
Chem. Phys. Lett.
290
,
473
(
1998
).
51.
P. R.
Bunker
and
R. E.
Moss
,
J. Mol. Spectrosc.
80
,
217
(
1980
).
52.
D. W.
Schwenke
,
J. Chem. Phys.
118
,
6898
(
2003
).
53.
D. W.
Schwenke
,
J. Phys. Chem. A
105
,
2352
(
2001
).
54.
I. N.
Kozin
,
M. M.
Law
,
J.
Tennyson
, and
J. M.
Hutson
,
Comput. Phys. Commun.
163
,
85
(
2004
).
55.
R. J.
Barber
,
J.
Tennyson
,
G. J.
Harris
, and
R. N.
Tolchenov
,
Mon. Not. R. Astron. Soc.
368
,
1087
(
2006
).
56.
D. W.
Schwenke
,
J. Phys. Chem.
100
,
2867
(
1996
);
D. W.
Schwenke
,
J. Phys. Chem.
100
,
18884
(E) (
1996
).
57.
T.
Furtenbacher
,
G.
Czakó
,
B. T.
Sutcliffe
,
A. G.
Császár
, and
V.
Szalay
,
J. Mol. Struct.
780–781
,
283
(
2006
).
58.
G.
Czakó
,
T.
Furtenbacher
, and
A. G.
Császár
, (unpublished).
59.
S.
Carter
and
N. C.
Handy
,
J. Chem. Phys.
87
,
4294
(
1987
).
60.
P.
Jensen
,
J. Mol. Spectrosc.
133
,
438
(
1989
).
61.
O. L.
Polyansky
,
P.
Jensen
, and
J.
Tennyson
,
J. Chem. Phys.
105
,
6490
(
1996
).
62.
R.
Lanquetin
,
L. H.
Coudert
, and
C.
Camy-Peyret
,
J. Mol. Spectrosc.
195
,
54
(
1999
).
63.
J. S.
Kain
,
O. L.
Polyansky
, and
J.
Tennyson
,
Chem. Phys. Lett.
317
,
365
(
2000
).
64.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
,
V.
Szalay
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
110
,
11971
(
1999
).
65.
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
,
J.
Tennyson
,
P.-F.
Coheur
,
P. F.
Bernath
,
M.
Canleer
, and
R.
Colin
,
Chem. Phys. Lett.
414
,
193
(
2005
).
66.
S. V.
Shirin
,
O. L.
Polyansky
,
N. F.
Zobov
,
R. I.
Ovsyannikov
,
A. G.
Császár
, and
J.
Tennyson
,
J. Mol. Spectrosc.
236
,
216
(
2006
).
67.
P.-F.
Coheur
,
P. F.
Bernath
,
M.
Carleer
,
R.
Colin
,
O. L.
Polyansky
,
N. F.
Zobov
,
S. V.
Shirin
,
R. J.
Barber
, and
J.
Tennyson
,
J. Chem. Phys.
122
,
074307
(
2005
).
68.
M.
Abramovitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1970
).
69.
A. G.
Császár
, in
The Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
 III
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1997
), pp.
13
30
.
70.
J.
Tennyson
,
N. F.
Zobov
,
R.
Williamson
,
O. L.
Polyansky
, and
P. F.
Bernath
,
J. Phys. Chem. Ref. Data
30
,
735
(
2001
).
71.
R. A.
Toth
,
J. Opt. Soc. Am. B
9
,
462
(
1992
).
72.
S. N.
Mikhailenko
,
V. G.
Tyuterev
, and
G.
Mellau
,
J. Mol. Spectrosc.
217
,
195
(
2003
).
73.
R. A.
Toth
,
J. Mol. Spectrosc.
162
,
41
(
1993
).
74.
N. F.
Zobov
,
O. L.
Polyansky
,
C. R.
Le Sueun
, and
J.
Tennyson
,
Commun. Pure Appl. Math.
260
,
381
(
1996
).
75.
A. E.
Lynas-Gray
,
L.
Lodi
,
R. N.
Tolchenov
 et al (unpublished).

Supplementary Material

You do not currently have access to this content.