The Markovian assumption stating that memory effects can be neglected is a crucial assumption in the theory of coarse-graining. We investigate the coarse-graining of a one-dimensional chain of oscillators where the atoms are grouped into clusters or blobs. When the interaction between oscillators is through Hookean springs, the cluster dynamics is non-Markovian, as has been recently noted by Cubero and Yaliraki [J. Chem. Phys.122, 03418 (2005)]. When the oscillators interact through a nonlinear potential of the Lennard-Jones type, the dynamics turns out to be Markovian. The different behavior in both types of interactions is attributed to the persistence of sound waves in the harmonic case, which are strongly suppressed in the nonlinear case.

1.
X.
He
and
L. S.
Luo
,
Phys. Rev. E
56
,
6811
(
1997
).
2.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
3.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
110
,
8605
(
1999
).
4.
R.
Delgado-Buscalioni
and
P. V.
Coveney
,
Phys. Rev. E
67
,
046704
(
2003
).
5.
P.
Español
and
P. B.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
6.
P.
Espanol
and
M.
Revenga
,
Phys. Rev. E
67
,
026705
(
2003
).
7.
J. J.
Monaghan
,
Rep. Prog. Phys.
68
,
1703
(
2005
).
8.
R.
Zwanzig
,
J. Chem. Phys.
40
,
2527
(
1964
).
9.
H.
Grabert
,
Projection Operator Techniques in Nonequilibrium Statistical Mechanics
(
Springer
,
Berlin
,
1982
).
10.
P.
Español
, in
Lecture Notes of SoftSimu2002—Novel Methods in Soft Matter Simulations, Lecture Notes in Physics
, edited by
A. L.
Mikko Karttunen
and
I.
Vattulainen
(
Springer-Verlag
,
Berlin
,
2003
).
11.
H. C.
Öttinger
,
Beyond Equilibrium Thermodynamics
(
Wiley
,
New York
,
2005
).
12.
P.
Español
,
Phys. Rev. E
53
,
1572
(
1996
).
13.
M.
Green
,
J. Chem. Phys.
22
,
398
(
1954
).
14.
D.
Cubero
and
S.
Yaliraki
,
J. Chem. Phys.
122
,
034108
(
2005
).
15.
D.
Cubero
and
S.
Yaliraki
,
Phys. Rev. E
72
,
032101
(
2005
).
16.
R.
Bird
,
C.
Curtis
,
R.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
2
.
17.
J.
Español
and
I.
Zúñiga
,
J. Chem. Phys.
98
,
574
(
1993
).
18.
G.
Arfken
,
Mathematical Methods for Physics
(
Academic
,
Florida
,
1985
).
19.
P.
Español
,
M.
Serrano
, and
I.
Zúñiga
,
Int. J. Mod. Phys. C
8
,
899
(
1997
).
You do not currently have access to this content.