We present a simple and efficient method for calculating symmetrized time correlation functions of neat quantum fluids. Using the pair-product approximation to each complex-time quantum mechanical propagator, symmetrized correlation functions are written in terms of a double integral for each degree of freedom with a purely positive integrand. At moderate temperatures and densities, where the pair-product approximation to the Boltzmann operator is sufficiently accurate, the method leads to quantitative results for the early time part of the correlation function. The method is tested extensively on liquid para-hydrogen at 25K and used to obtain accurate quantum mechanical results for the initial 0.2ps segment of the symmetrized velocity autocorrelation function of this system, as well as the incoherent dynamic structure factor at certain momentum transfer values.

1.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
2.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
, (
McGraw-Hill
,
New York
,
1965
).
3.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
4.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
5.
E. L.
Pollock
and
D. M.
Ceperley
,
Phys. Rev. B
30
,
2555
(
1984
).
6.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
7.
J. D.
Doll
,
D. L.
Freeman
, and
T. L.
Beck
,
Adv. Chem. Phys.
78
,
61
(
1990
).
8.
N.
Makri
,
Comput. Phys. Commun.
63
,
389
(
1991
).
9.
L. S.
Schulman
,
Techniques and Applications of Path Integration
(
Wiley
,
New York
,
1981
).
10.
H.
Kleinert
,
Path Integrals in Quantum Mechanics, Statistics and Polymer Physics
, 2nd ed. (
World Scientific
,
Singapore
,
1995
).
11.
N.
Makri
,
J. Phys. Chem.
97
,
2417
(
1993
).
12.
V. S.
Filinov
,
Nucl. Phys. B
271
,
717
(
1986
).
13.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
14.
C. H.
Mak
and
D.
Chandler
,
Phys. Rev. A
41
,
5709
(
1990
).
15.
H.
Wang
,
D. E.
Manolopoulos
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
6317
(
2001
).
17.
C. H.
Mak
,
R.
Egger
, and
J.
Gottschick
,
Phys. Rev. Lett.
81
,
4533
(
1998
).
18.
N.
Makri
,
Chem. Phys. Lett.
400
,
446
(
2004
).
19.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
20.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
21.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
22.
N.
Makri
,
J. Phys. Chem.
102
,
4414
(
1998
).
23.
N.
Makri
,
J. Chem. Phys.
111
,
6164
(
1999
).
24.
J. H.
Van Vleck
,
Proc. Natl. Acad. Sci. U.S.A.
14
,
178
(
1928
).
25.
26.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
).
27.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
28.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
29.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
30.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
31.
M. A.
Sepulveda
and
F.
Grossmann
,
Adv. Chem. Phys.
96
,
191
(
1996
).
32.
D. J.
Tannor
and
S.
Garashchuk
,
Annu. Rev. Phys. Chem.
51
,
553
(
2000
).
33.
A. R.
Walton
and
D. E.
Manolopoulos
,
Mol. Phys.
87
,
961
(
1996
).
34.
M. L.
Brewer
,
J. S.
Hulme
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
106
,
4832
(
1997
).
35.
S.
Garashchuk
,
F.
Grossmann
, and
D.
Tannor
,
J. Chem. Soc., Faraday Trans.
93
,
781
(
1997
).
36.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
6346
(
1997
).
37.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
108
,
8870
(
1998
).
38.
V.
Guallar
,
V. S.
Batista
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
9922
(
1999
).
39.
M.
Thoss
,
W. H.
Miller
, and
G.
Stock
,
J. Chem. Phys.
112
,
10282
(
2000
).
40.
E. A.
Coronado
,
V. S.
Batista
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
5566
(
2000
).
41.
M.
Ovchinnikov
,
V. A.
Apkarian
, and
G. A.
Voth
,
J. Chem. Phys.
114
,
7130
(
2001
).
42.
T.
Yamamoto
and
W. H.
Miller
,
J. Chem. Phys.
118
,
2135
(
2003
).
43.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
9220
(
2001
).
44.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
45.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6157
(
1994
).
46.
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
1996
).
47.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
48.
T. F.
Miller
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
184503
(
2005
).
49.
E.
Rabani
and
D. R.
Reichman
,
J. Chem. Phys.
116
,
6271
(
2002
).
50.
D. R.
Reichman
and
E.
Rabani
,
J. Chem. Phys.
116
,
6279
(
2002
).
51.
R. C.
Brown
and
E. J.
Heller
,
J. Chem. Phys.
75
,
186
(
1981
).
52.
R. E.
Cline
, Jr.
, and
P. G.
Wolynes
,
J. Chem. Phys.
88
,
4334
(
1988
).
53.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
54.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Phys. Chem. B
108
,
19799
(
2004
).
55.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
107
,
9059
(
2003
).
56.
E.
Galliccio
and
B. J.
Berne
,
J. Chem. Phys.
101
,
9909
(
1994
).
57.
E.
Galliccio
and
B. J.
Berne
,
J. Chem. Phys.
105
,
7064
(
1996
).
58.
E.
Rabani
,
D. R.
Reichman
,
G.
Krilov
, and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
1129
(
2002
).
59.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
60.
J.
Shao
and
N.
Makri
,
J. Phys. Chem. A
103
,
7753
(
1999
).
61.
J.
Shao
and
N.
Makri
,
J. Phys. Chem. A
103
,
9479
(
1999
).
62.
N.
Makri
,
J. Phys. Chem. B
106
,
8390
(
2002
).
63.
N. J.
Wright
and
N.
Makri
,
J. Chem. Phys.
119
,
1634
(
2003
).
64.
N. J.
Wright
and
N.
Makri
,
J. Phys. Chem. B
108
,
6816
(
2004
).
65.
N.
Makri
,
A.
Nakayama
, and
N.
Wright
,
J. Theor. Comput. Chem.
3
,
391
(
2004
).
66.
A.
Nakayama
and
N.
Makri
,
J. Chem. Phys.
119
,
8592
(
2003
).
67.
A.
Nakayama
and
N.
Makri
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
4230
(
2005
).
68.
A.
Calhoun
,
M.
Pavese
, and
G. A.
Voth
,
Chem. Phys. Lett.
262
,
415
(
1996
).
69.
K.
Kinugawa
,
Chem. Phys. Lett.
292
,
454
(
1998
).
70.
Y.
Yonetani
and
K.
Kinugawa
,
J. Chem. Phys.
119
,
9651
(
2003
).
71.
Y.
Yonetani
and
K.
Kinugawa
,
J. Chem. Phys.
120
,
10624
(
2004
).
72.
T. D.
Hone
and
G. A.
Voth
,
J. Chem. Phys.
121
,
6412
(
2004
).
73.
D. R.
Reichman
and
E.
Rabani
,
Phys. Rev. Lett.
87
,
265702
(
2001
).
74.
E.
Rabani
and
D. R.
Reichman
,
J. Chem. Phys.
120
,
1458
(
2004
).
75.
I. R.
Craig
and
D. E.
Manolopoulos
,
Chem. Phys.
322
,
236
(
2006
).
76.
B. N.
Esel’son
,
Y. P.
Blagoi
,
V. V.
Grigor’ev
,
V. G.
Manzhelii
,
S. A.
Mikhailenko
, and
N. P.
Neklyudov
,
Properties of Liquid and Solid Hydrogen
(
Israel Program for Scientific Translations
,
Jerusalem
,
1971
).
77.
M.
Celli
,
D.
Colognesi
, and
M.
Zoppi
,
Phys. Rev. E
66
,
021202
(
2002
).
78.
D.
Colognesi
,
M.
Celli
,
M.
Neumann
, and
M.
Zoppi
,
Phys. Rev. E
70
,
061202
(
2004
).
79.
I. F.
Silvera
and
V. V.
Goldman
,
J. Chem. Phys.
69
,
4209
(
1978
).
80.
D.
Thirumalai
and
B. J.
Berne
,
J. Chem. Phys.
81
,
2512
(
1984
).
81.
D.
Thirumalai
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
79
,
5063
(
1983
).
82.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
151
,
1
(
1988
).
83.
R. D.
Coalson
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
91
,
4242
(
1989
).
84.
P.
Zhang
,
R. M.
Levy
, and
R. A.
Friesner
,
Chem. Phys. Lett.
144
,
236
(
1988
).
85.
86.
D. T.
Colbert
, and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
87.
D. J.
Scharf
,
G. J.
Martyna
, and
M. L.
Klein
,
Low Temp. Phys.
19
,
364
(
1993
).
88.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic
,
San Diego
,
1996
).
89.
A.
Rahman
,
K. S.
Singwi
, and
A.
Sjolander
,
Phys. Rev.
126
,
986
(
1962
).
You do not currently have access to this content.