We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit and to have good performance for both main-group chemistry and transition metal chemistry. The M06-L functional and 14 other functionals have been comparatively assessed against 22 energetic databases. Among the tested functionals, which include the popular B3LYP, BLYP, and BP86 functionals as well as our previous M05 functional, the M06-L functional gives the best overall performance for a combination of main-group thermochemistry, thermochemical kinetics, and organometallic, inorganometallic, biological, and noncovalent interactions. It also does very well for predicting geometries and vibrational frequencies. Because of the computational advantages of local functionals, the present functional should be very useful for many applications in chemistry, especially for simulations on moderate-sized and large systems and when long time scales must be addressed.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
2.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
3.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
4.
D. C.
Langreth
and
M. J.
Mehl
,
Phys. Rev. B
28
,
1809
(
1983
).
5.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
6.
A. D.
Becke
,
J. Chem. Phys.
84
,
4524
(
1986
).
7.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
8.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
9.
T.
Ziegler
,
Chem. Rev. (Washington, D.C.)
91
,
651
(
1991
).
10.
M.
Filatov
and
W.
Thiel
,
Mol. Phys.
91
,
847
(
1997
).
11.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
12.
T. V.
Voorhis
and
G. E.
Scuseria
,
J. Chem. Phys.
109
,
400
(
1998
).
13.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
14.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
15.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
16.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
108
,
664
(
1998
).
17.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
18.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
864
(
1964
).
19.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
20.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
,
J. Chem. Phys.
123
,
062201
(
2005
).
21.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
22.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
23.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
24.
R. A.
Kendall
,
E.
Apra
,
D. E.
Bernholdt
 et al.,
Comput. Phys. Commun.
128
,
260
(
2000
).
25.
G.
Te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
Van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
26.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
27.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6692
(
2005
).
28.
K.
Eichkorn
,
O.
Treutler
,
H.
Oehm
,
M.
Haeser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
29.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
30.
L.
Füsti-Molnár
and
P.
Pulay
,
THEOCHEM
666–667
,
25
(
2003
).
31.
Y.-B.
Wang
and
Z.
Lin
,
J. Am. Chem. Soc.
25
,
6072
(
2003
).
32.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN03,
Gaussian, Inc.
, Pittsburgh, PA,
2003
.
33.
G. E.
Scuseria
and
V. N.
Staroverov
, in Theory and Application of Computational Chemistry: The First 40Years, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), p.
669
.
34.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
7274
(
2004
).
35.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
121
,
1187
(
2004
).
36.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
37.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
124
,
154709
(
2006
).
38.
N.
Schultz
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
4388
(
2005
).
39.
N.
Schultz
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
11127
(
2005
).
40.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
J. Chem. Phys.
107
,
5007
(
1997
).
41.
N. C.
Handy
and
A. J.
Cohen
,
Mol. Phys.
99
,
403
(
2001
).
42.
A. D.
Becke
,
J. Chem. Phys.
119
,
2972
(
2003
).
43.
A. D.
Becke
,
J. Chem. Phys.
122
,
064101
(
2005
).
44.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Phys.
123
,
161103
(
2005
). Note that in this communication we interchanged cCαβ,i and cCσσ,i in Table I. In addition, “reduced density xσ” before Eq. (1) should read “reduced density gradient xσ.”
45.
P. M. W.
Gill
,
Mol. Phys.
89
,
433
(
1996
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
47.
J. P.
Perdew
, in
Electronic Structure of Solids ’91
, edited by
P.
Ziesche
and
H.
Eschig
(
Akademie
,
Berlin
,
1991
), p.
11
.
48.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
49.
A. D.
Boese
and
N. C.
Handy
,
J. Chem. Phys.
116
,
9559
(
2002
).
50.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
51.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
12129
(
2003
).
52.
T.
Lovelll
,
R.
Stranger
, and
J. E.
McGrady
,
Inorg. Chem.
40
,
39
(
2001
).
53.
M.
Reiher
,
O.
Salomon
, and
B. A.
Hess
,
Theor. Chem. Acc.
107
,
48
(
2001
).
54.
J. N.
Harvey
,
R.
Poli
, and
K. M.
Smith
,
Coord. Chem. Rev.
238–239
,
347
(
2003
).
55.
J.-L.
Carreón-Macedo
and
J. N.
Harvey
,
J. Am. Chem. Soc.
126
,
5789
(
2004
).
56.
R.
Poli
,
J. Organomet. Chem.
689
,
4291
(
2004
).
57.
C.
Hermann
,
J.
Nevgebauer
,
J. A.
Gladysz
, and
M.
Reiher
,
Inorg. Chem.
44
,
6175
(
2005
).
58.
D. M.
Jenkins
and
J. C.
Peters
,
J. Am. Chem. Soc.
127
,
7148
(
2005
).
59.
F.
Neese
,
J. Inorg. Biochem.
100
,
716
(
2006
).
60.
J.-L.
Carreón-Macedo
and
J. N.
Harvey
,
Phys. Chem. Chem. Phys.
8
,
93
(
2006
).
61.
M. P.
Mehn
,
S. D.
Brown
,
T. K.
Paine
,
W. W.
Brennessel
,
C. J.
Cramer
,
J. C.
Peters
, and
L. J.
Que
,
Dalton Trans.
2006
,
1347
(
2006
).
62.
I.
Rudra
,
Q.
Wu
, and
T. V.
Voorhis
,
J. Chem. Phys.
124
,
024103
(
2006
).
63.
M. C.
Holthausen
,
J. Comput. Chem.
26
,
1505
(
2005
).
64.
R. L.
Martin
and
P. J.
Hay
,
J. Chem. Phys.
75
,
4539
(
1981
).
65.
B. J.
Lynch
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Phys. Chem. A
107
,
1384
(
2003
).
66.
B. J.
Lynch
and
D. G.
Truhlar
,
J. Phys. Chem. A
107
,
3898
(
2003
).
67.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
7
,
43
(
2005
).
68.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
5656
(
2005
).
69.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
110
,
10478
(
2006
).
70.
Y.
Zhao
,
N.
González-García
, and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
2012
(
2005
).
71.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
72.
P.
Jurecka
,
J.
Sponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
73.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
124
,
224105
(
2006
).
74.
F.
Furche
and
J. P.
Perdew
,
J. Chem. Phys.
124
,
044103
(
2006
).
75.
E. I.
Izgorodina
,
M. L.
Coote
, and
L.
Radom
,
J. Phys. Chem. A
109
,
7558
(
2005
).
76.
A. P.
Scott
and
L.
Radom
,
J. Phys. Chem.
100
,
16502
(
1996
).
77.
H. L.
Woodcock
,
H. F.
Schaefer
, and
P. R.
Schreiner
,
J. Phys. Chem. A
106
,
11923
(
2002
).
78.
See EPAPS Document No. E-JCPSA6-125-309642 for all previously published databases. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
79.
P. L.
Fast
,
J.
Corchado
,
M. L.
Sanchez
, and
D. G.
Truhlar
,
J. Phys. Chem. A
103
,
3139
(
1999
).
80.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
6908
(
2004
).
81.
J. M. L.
Martin
,
J.
El-Yazal
, and
J.-P.
Francois
,
Mol. Phys.
86
,
1437
(
1995
).
82.
J. M. L.
Martin
,
J. Chem. Phys.
100
,
8186
(
1994
).
83.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
84.
P. L.
Fast
,
M. L.
Sanchez
, and
D. G.
Truhlar
,
Chem. Phys. Lett.
306
,
407
(
1999
).
85.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
110
,
4703
(
1999
).
86.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
87.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
88.
W. J.
Hehre
,
L.
Radom
,
P. v. R.
Schleyer
, and
J. A.
Pople
,
Ab Initio Molecular Orbital Theory
, 1st ed. (
Wiley
,
New York
,
1986
).
89.
P. L.
Fast
and
D. G.
Truhlar
,
J. Phys. Chem. A
104
,
6111
(
2000
).
90.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
108
,
10200
(
2004
).
91.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
92.
D. E.
Woon
and
J. T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
93.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
94.
M. M.
Quintal
,
A.
Karton
,
M. A.
Iron
,
A. D.
Boese
, and
J. M. L.
Martin
,
J. Phys. Chem. A
110
,
709
(
2006
).
95.
W. J.
Stevens
,
M.
Krauss
,
H.
Basch
, and
P. G.
Jasien
,
Can. J. Chem.
70
,
612
(
1992
).
96.
D.
Andrae
,
U.
Haeussermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Theor. Chim. Acta
77
,
123
(
1990
).
97.
K.
Raghavachari
and
G. W.
Trucks
,
J. Chem. Phys.
91
,
1062
(
1989
).
98.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
99.
D. W.
Schwenke
and
D. G.
Truhlar
,
J. Chem. Phys.
82
,
2418
(
1985
);
D. W.
Schwenke
and
D. G.
Truhlar
,
J. Chem. Phys.
86
,
3760
E
(
1987
).
100.
H.
Stoll
,
C. M. E.
Pavkidou
, and
H.
Preuss
,
Theor. Chim. Acta
49
,
143
(
1978
).
101.
A. D.
Becke
,
J. Chem. Phys.
109
,
2092
(
1998
).
102.
A. D.
Becke
,
J. Chem. Phys.
112
,
4020
(
2000
).
103.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
104.
A. D.
Rabuck
and
G. E.
Scuseria
,
Chem. Phys. Lett.
309
,
450
(
1999
).
105.
Y.
Zhao
,
J.
Pu
,
B. J.
Lynch
, and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
6
,
673
(
2004
).
106.
E. R.
Johnson
,
R. A.
Wolkow
, and
G. A.
DiLabio
,
Chem. Phys. Lett.
394
,
334
(
2004
).
107.
J. C.
Sancho-Garcia
and
J.
Cornil
,
J. Chem. Phys.
121
,
3096
(
2004
).
108.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
(in press).
109.
G. C. L.
Chan
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
107
,
1
(
1997
).
110.
T. V.
Voorhis
and
G. E.
Scuseria
,
Mol. Phys.
92
,
601
(
1997
).
111.
J. W.
Negele
and
D.
Vautherin
,
Phys. Rev. C
5
,
1472
(
1972
).
112.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F. F.
Fischer
,
Phys. Rev. A
47
,
3649
(
1993
).
113.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
2715
(
2004
).
114.
P. J.
Wilson
,
T. J.
Bradley
, and
D. J.
Tozer
,
J. Chem. Phys.
115
,
9233
(
2001
).
115.
X.
Xu
and
W. A.
Goddard
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
2673
(
2004
).
116.
A. D.
Boese
and
J. M. L.
Martin
,
J. Chem. Phys.
121
,
3405
(
2004
).
117.
Y.
Zhao
,
B. J.
Lynch
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
4786
(
2004
).
118.
I. W.
Hamley
,
Angew. Chem., Int. Ed.
42
,
1692
(
2003
).
119.
G. K.
Ghosh
,
Bull. Mater. Sci.
26
,
3
(
2003
).
120.
T.
Kato
,
N.
Misoshita
, and
K.
Kishimoto
,
Angew. Chem., Int. Ed.
45
,
38
(
2005
).
122.
M.
Lehmann
,
C.
Köhn
,
H.
Meier
,
S.
Renker
, and
A.
Oehlhof
,
J. Mater. Chem.
16
,
441
(
2006
).
123.
R.
Holyst
,
Soft Matter
1
,
329
(
2005
).
124.
A.
Casey
,
G. F.
Fassell
,
M.
McNamara
,
H. J.
Byrne
, and
G.
Chambers
,
Synth. Met.
153
,
357
(
2005
).
125.
M. R.
Wilson
,
Int. Rev. Phys. Chem.
24
,
421
(
2005
).
126.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
,
J. Am. Chem. Soc.
117
,
1141
(
1995
).
127.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
,
J. Phys. Chem.
100
,
12265
(
1996
).
128.
E. T.
Kool
,
J. C.
Morales
, and
K. M.
Guckian
,
Angew. Chem., Int. Ed.
39
,
990
(
2000
).
129.
P.
Barthelemy
,
S. J.
Lee
, and
M.
Grinstaff
,
Pure Appl. Chem.
77
,
2133
(
2005
).
130.
J.
Vondrásek
,
L.
Bendová
,
V.
Klusák
, and
P.
Hobza
,
J. Am. Chem. Soc.
127
,
2615
(
2005
).
131.
H.
Mansikkamaeki
,
M.
Nissinen
, and
K.
Rissanen
,
Angew. Chem., Int. Ed.
43
,
1243
(
2004
).
132.
M.
Vázquez
,
M. R.
Bermejo
,
M.
Licchelli
,
A. M.
González-Noya
,
R. M.
Pedrido
,
C.
Sangregorio
,
L.
Sorace
,
A. M.
García-Deibe
, and
J.
Sanmartín
,
Eur. J. Inorg. Chem.
17
,
3479
(
2005
).
133.
J.
Hautman
and
M. L.
Klein
,
NATO ASI Ser., Ser. E
205
,
395
(
1991
).
134.
K. D.
Karlin
,
Science
261
,
701
(
1993
).
135.
R. H.
Crabtree
,
The Organometallic Chemistry of the Transition Metals
, 2nd ed. (
Wiley
,
New York
,
1994
).
136.
S. M.
George
,
Chem. Rev. (Washington, D.C.)
95
,
475
(
1995
).
137.
G. A.
Somorjai
,
Chem. Rev. (Washington, D.C.)
96
,
1223
(
1995
).
138.
M. A.
Ratner
,
B.
Davis
,
M.
Kemp
,
V.
Mujica
,
A.
Roitberg
, and
S.
Yaliraki
,
Ann. N.Y. Acad. Sci.
852
,
22
(
1998
).
139.
Transition State Modeling for Catalysis
, edited by
D. G.
Truhlar
and
K.
Morokuma
(
American Chemical Sociaty
,
Washington, DC
,
1999
).
140.
E. R.
Davidson
,
Chem. Rev. (Washington, D.C.)
100
,
351
(
2000
).
141.
P. E. M.
Siegbahn
and
M. R. A.
Blomberg
,
Chem. Rev. (Washington, D.C.)
100
,
421
(
2000
).
142.
J. A.
Gladysz
,
Chem. Rev. (Washington, D.C.)
100
,
1167
(
2000
).
143.
Handbook on Metalloproteins
, edited by
I.
Bertini
,
A.
Sigel
, and
H.
Sigel
(
Dekker
,
New York
,
2001
).
144.
A. K.
Rappe
,
W. M.
Skiff
, and
C. J.
Casewit
,
Chem. Rev. (Washington, D.C.)
100
,
1435
(
2000
).
145.
C.
Coperat
,
M.
Chabonas
,
R. P.
Saint-Arromon
, and
J.-M.
Basset
,
Angew. Chem., Int. Ed.
42
,
156
(
2003
).
146.
G.
Cavigliasso
and
R.
Stranger
,
Inorg. Chem.
44
,
5081
(
2005
).
147.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
7374
(
2000
).
148.
B.
Champagne
,
E. A.
Perpete
,
S. J. A.
van Gisbergen
,
E.-J.
Baerends
,
J. G.
Snijders
,
C.
Soubra-Ghaoui
,
K. A.
Robins
, and
B.
Kirtman
,
J. Chem. Phys.
109
,
10489
(
1998
).
149.
B.
Champagne
,
E. A.
Perpete
,
D.
Jacquemin
,
S. J. A. V.
Gisbergen
,
E.-J.
Baerends
,
C.
Soubra-Ghaoui
,
K. A.
Robins
, and
B.
Kirtman
,
J. Phys. Chem. A
104
,
4755
(
2000
).
150.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
151.
I.
Grabowski
,
S.
Hirata
,
S.
Ivanov
, and
R. J.
Bartlett
,
J. Chem. Phys.
116
,
4415
(
2002
).
152.
R.
Pollet
,
A.
Savin
,
T.
Leininger
, and
H.
Stoll
,
J. Chem. Phys.
116
,
1250
(
2002
).
153.
P.
Mori-Sanchez
,
Q.
Wu
, and
W.
Yang
,
J. Chem. Phys.
123
,
62204
(
2005
).
154.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
155.
B. J.
Lynch
and
D. G.
Truhlar
,
J. Phys. Chem. A
107
,
8996
(
2003
)
B. J.
Lynch
and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
1460
(E) (
2004
).
156.
S.
Grimme
,
Angew. Chem., Int. Ed.
45
,
4460
(
2006
).
157.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
(
2002
).
158.
NIST Standard Reference Database. http://webbook. nist. gov/chemistry/.

Supplementary Material

You do not currently have access to this content.