We report the use of optimal control algorithms for tailoring the effective Hamiltonians in nuclear magnetic resonance (NMR) spectroscopy through sophisticated radio-frequency (rf) pulse irradiation. Specifically, we address dipolar recoupling in solid-state NMR of powder samples for which case pulse sequences offering evolution under planar double-quantum and isotropic mixing dipolar coupling Hamiltonians are designed. The pulse sequences are constructed numerically to cope with a range of experimental conditions such as inhomogeneous rf fields, spread of chemical shifts, the intrinsic orientation dependencies of powder samples, and sample spinning. While the vast majority of previous dipolar recoupling sequences are operating through planar double-or zero-quantum effective Hamiltonians, we present here not only improved variants of such experiments but also for the first time homonuclear isotropic mixing sequences which transfers all Ix, Iy, and Iz polarizations from one spin to the same operators on another spin simultaneously and with equal efficiency. This property may be exploited to increase the signal-to-noise ratio of two-dimensional experiments by a factor of 2 compared to conventional solid-state methods otherwise showing the same efficiency. The sequences are tested numerically and experimentally for a powder of Cα13,Cβ13-L-alanine and demonstrate substantial sensitivity gains over previous dipolar recoupling experiments.

1.
U.
Haeberlen
and
J. S.
Waugh
,
Phys. Rev.
175
,
453
(
1968
).
2.
M.
Mehring
,
Principles of High Resolution NMR in Solids
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1983
).
3.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Multidimensional Solid-State and Polymers
(
Academic
,
New York
,
1994
).
4.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Oxford University Press
,
Oxford
,
1987
).
5.
B. C.
Gerstein
and
C. R.
Dybowski
,
Transient Techniques in NMR of Solids: An Introduction to Theory and Practice
(
Academic
,
New York
,
1985
).
6.
M.
Hohwy
and
N. C.
Nielsen
,
J. Chem. Phys.
109
,
3780
(
1998
).
7.
T. S.
Untidt
and
N. C.
Nielsen
,
Phys. Rev. E
65
,
021108
(
2002
).
8.
D.
Siminovitch
,
T.
Untidt
, and
N. C.
Nielsen
,
J. Chem. Phys.
120
,
51
(
2004
).
9.
T. S.
Untidt
,
S. J.
Glaser
,
C.
Griesinger
, and
N. C.
Nielsen
,
Mol. Phys.
96
,
1739
(
1999
).
10.
T. S.
Untidt
and
N. C.
Nielsen
,
J. Chem. Phys.
113
,
8464
(
2000
).
11.
W.
Magnus
,
Commun. Pure Appl. Math.
7
,
649
(
1954
).
12.
D. P.
Burum
and
W. K.
Rhim
,
J. Chem. Phys.
71
,
944
(
1979
).
13.
P.
Mansfield
,
M. J.
Orchard
,
D. C.
Stalker
, and
K. H. B.
Richards
,
Phys. Rev. B
7
,
90
(
1973
).
14.
A. E.
Bennett
,
R. G.
Griffin
, and
S.
Vega
,
NMR Basic Principles and Progress
(
Springer-Verlag
,
Berlin
,
1994
), Vol.
33
, p.
1
.
15.
S.
Dusold
and
A.
Sebald
,
Annu. Rep. NMR Spectrosc.
41
,
185
(
2000
).
16.
M. H.
Levitt
, in
Encyclopedia of NMR
, edited by
D. M.
Grant
and
R. K.
Harris
(
Wiley
,
Chichester
,
2002
), pp.
165
196
.
17.
L.
Pontryagin
,
B.
Boltyanskii
,
R.
Gamekrelidze
, and
E.
Mishchenko
,
The Mathematical Theory of Optimal Processes
(
Wiley-Interscience
,
New York
,
1962
).
18.
V. F.
Krotov
,
Global Methods in Optimal Control
(
Dekker
,
New York
,
1996
).
19.
A. B.
Jr
and
Y.-C.
Ho
,
Applied Optimal Control
(
Hemisphere
,
Washington, DC
,
1975
).
20.
T.
Reiss
,
N.
Khaneja
, and
S. J.
Glaser
,
J. Magn. Reson.
154
,
192
(
2002
).
21.
N.
Khaneja
,
T.
Reiss
,
B.
Luy
, and
S. J.
Glaser
,
J. Magn. Reson.
162
,
311
(
2003
).
22.
N.
Khaneja
,
J.-S.
Li
,
C.
Kehlet
,
B.
Luy
, and
S. J.
Glaser
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
14742
(
2004
).
23.
K.
Kobzar
,
B.
Luy
,
N.
Khaneja
, and
S. J.
Glaser
,
J. Magn. Reson.
173
,
229
(
2005
).
24.
N.
Khaneja
,
T. O.
Reiss
,
C. T.
Kehlet
,
T.
Schulte-Herbrüggen
, and
S. J.
Glaser
,
J. Magn. Reson.
172
,
296
(
2005
).
25.
J. L.
Neves
,
B.
Heitmann
,
T. O.
Reiss
,
H. H. R.
Schor
,
N.
Khaneja
, and
S. J.
Glaser
,
J. Magn. Reson.
181
,
126
(
2006
).
26.
C. T.
Kehlet
,
A. C.
Sivertsen
,
M.
Bjerring
,
T. O.
Reiss
,
N.
Khaneja
,
S. J.
Glaser
, and
N. C.
Nielsen
,
J. Am. Chem. Soc.
126
,
10202
(
2004
).
27.
C. T.
Kehlet
,
T.
Vosegaard
,
N.
Khaneja
,
S. J.
Glaser
, and
N. C.
Nielsen
,
Chem. Phys. Lett.
414
,
204
(
2005
).
28.
T.
Vosegaard
,
C. T.
Kehlet
,
N.
Khaneja
,
S. J.
Glaser
, and
N. C.
Nielsen
,
J. Am. Chem. Soc.
127
,
13768
(
2005
).
29.
T.
Schulte-Herbrüggen
,
A.
Spörl
,
N.
Khaneja
, and
S. J.
Glaser
,
Phys. Rev. A
72
,
042331
(
2005
).
30.
D.
Sakellariou
,
A.
Lesage
,
P.
Hodgkinson
, and
L.
Emsley
,
Chem. Phys. Lett.
319
,
253
(
2000
).
31.
T. O.
Levante
,
T.
Bremi
, and
R. R.
Ernst
,
J. Magn. Reson., Ser. A
121
,
167
(
1996
).
32.
P. K.
Mandal
and
A.
Majumdar
,
Concepts Magn. Reson., Part B
20
,
1
(
2004
).
33.
T.
Untidt
,
T.
Schulte-Herbrüggen
,
B.
Luy
,
S. J.
Glaser
,
C.
Griesinger
,
O. W.
Sørensen
, and
N. C.
Nielsen
,
Mol. Phys.
95
,
787
(
1998
).
35.
Y.
Ishii
,
J. Chem. Phys.
119
,
8473
(
2001
).
36.
L.
Braunschweiler
and
R. R.
Ernst
,
J. Magn. Reson. (1969-1992)
53
,
521
(
1983
).
37.
N. C.
Nielsen
,
H.
Bildsøe
,
H. J.
Jakobsen
, and
M. H.
Levitt
,
J. Chem. Phys.
101
,
1805
(
1994
).
38.
Y. K.
Lee
,
N. D.
Kurur
,
M.
Helmle
,
O. G.
Johannessen
,
N. C.
Nielsen
, and
M. H.
Levitt
,
Chem. Phys. Lett.
242
,
304
(
2004
).
39.
M.
Bak
,
J. T.
Rasmussen
, and
N. C.
Nielsen
,
J. Magn. Reson.
147
,
296
(
2000
).
40.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P. F.
Nery
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
41.
M.
Bak
and
N. C.
Nielsen
,
J. Magn. Reson.
125
,
132
(
1997
).
42.
A.
Brinkmann
,
J. S.
auf der Günne
, and
M. H.
Levitt
,
J. Magn. Reson.
156
,
79
(
2002
).
43.
D.
Marion
and
K.
Wüthrich
,
Biochem. Biophys. Res. Commun.
113
,
967
(
1983
).
44.
D. J.
States
,
R. A.
Haberkorn
, and
D. J.
Ruben
,
J. Magn. Reson. (1969-1992)
48
,
286
(
1982
).
45.
T.
Gullion
,
D. B.
Baker
, and
M. S.
Conradi
,
J. Magn. Reson. (1969-1992)
89
,
479
(
1990
).
46.
M.
Verel
,
M.
Baldus
,
M.
Nijman
,
J. W. M.
van Os
, and
B.
Meier
,
Chem. Phys. Lett.
280
,
31
(
1997
).
47.
M.
Verel
,
M.
Ernst
, and
B.
Meier
,
J. Magn. Reson.
150
,
81
(
2001
).
48.
See EPAPS Document No. E-JCPSA6-125-013642 for tables of rf amplitudes and phases for OC-DQ planar and OC isotropic mixing sequences (both with 1 ms duration). This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
49.
P.
Caravatti
,
L.
Braunschweiler
, and
R. R.
Ernst
,
Chem. Phys. Lett.
100
,
305
(
1983
).
50.
A.
Kubo
and
C. A.
McDowell
,
J. Magn. Reson. (1969-1992)
100
,
517
(
1992
).

Supplementary Material

You do not currently have access to this content.