The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3(X=SiPb) as well as X3+, XH3, and XF3(X=PBi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of 1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal quantum number. The relative contributions converge to universal fractions for the core and subvalence ns shells. The valence shell contribution is negligible, which explains the HAHA characteristics of the FC/SZ-KE term. Although the nonrelativistic theory gives correct chemical shift trends in present systems, the third-order SO-I terms are necessary for more reliable predictions. All of the presently considered relativistic corrections provide significant HAHA contributions to absolute shielding in heavy atoms.

1.
P.
Pyykkö
,
Adv. Quantum Chem.
11
,
353
(
1978
);
P.
Pyykkö
,
Chem. Rev. (Washington, D.C.)
88
,
563
(
1988
).
2.
J.
Autschbach
and
T.
Ziegler
, in
Encyclopedia of Nuclear Magnetic Resonance
, edited by
D. M.
Grant
and
R. K.
Harris
(
Wiley
,
Chichester
,
2002
), Vol.
9
, p.
306
.
3.
J.
Vaara
,
P.
Manninen
, and
P.
Lantto
, in
Calculation of NMR and EPR Parameters: Theory and Applications
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley-VCH
,
Weinheim
,
2004
), p.
209
.
4.
P.
Manninen
,
P.
Lantto
,
J.
Vaara
, and
K.
Ruud
,
J. Chem. Phys.
119
,
2623
(
2003
).
5.
P.
Manninen
,
K.
Ruud
,
P.
Lantto
, and
J.
Vaara
,
J. Chem. Phys.
122
,
114107
(
2005
);
[PubMed]
P.
Manninen
,
K.
Ruud
,
P.
Lantto
, and
J.
Vaara
,
J. Chem. Phys.
124
,
149901
(E) (
2006
).
6.
J. I.
Melo
,
M. C.
Ruiz de Azua
,
C. G.
Giribet
,
G. A.
Aucar
, and
R. H.
Romero
,
J. Chem. Phys.
118
,
471
(
2003
).
7.
M. C.
Ruiz de Azua
,
J. I.
Melo
, and
C. G.
Giribet
,
Mol. Phys.
101
,
3103
(
2003
).
8.
J. I.
Melo
,
M. C.
Ruiz de Azua
,
C. G.
Giribet
,
G. A.
Aucar
, and
P. F.
Provasi
,
J. Chem. Phys.
121
,
6798
(
2004
).
9.
S. K.
Wolff
,
T.
Ziegler
,
E.
van Lenthe
, and
E. J.
Baerends
,
J. Chem. Phys.
110
,
7689
(
1999
).
10.
H.
Fukui
and
T.
Baba
,
J. Chem. Phys.
117
,
7836
(
2002
).
11.
C. C.
Ballard
,
M.
Hada
,
H.
Kaneko
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
254
,
170
(
1996
).
12.
H.
Fukui
and
T.
Baba
,
J. Chem. Phys.
108
,
3854
(
1998
).
13.
T.
Baba
and
H.
Fukui
,
J. Chem. Phys.
110
,
131
(
1999
).
14.
R.
Fukuda
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
118
,
1015
(
2003
).
15.
R.
Fukuda
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
118
,
1027
(
2003
).
16.
K.
Kudo
and
H.
Fukui
,
J. Chem. Phys.
123
,
114102
(
2005
).
17.
P.
Pyykkö
,
A.
Görling
, and
N.
Rösch
,
Mol. Phys.
61
,
195
(
1987
).
18.
M.
Kaupp
,
O. L.
Malkina
,
V. G.
Malkin
, and
P.
Pyykkö
,
Chem.-Eur. J.
4
,
118
(
1998
).
19.
U.
Edlund
,
T.
Lejon
,
P.
Pyykkö
,
T. K.
Venkatachalam
, and
E.
Buncel
,
J. Am. Chem. Soc.
109
,
5982
(
1987
).
20.
S. S.
Gómez
,
R. H.
Romero
, and
G. A.
Aucar
,
J. Chem. Phys.
117
,
7942
(
2002
).
21.
L.
Visscher
,
T.
Enevoldsen
,
T.
Saue
,
H. J. Aa.
Jensen
, and
J.
Oddershede
,
J. Comput. Chem.
20
,
1262
(
1999
).
22.
S. S.
Gómez
,
R. H.
Romero
, and
G. A.
Aucar
,
Chem. Phys. Lett.
367
,
265
(
2003
).
23.
S. S.
Gómez
,
J. I.
Melo
,
R. H.
Romero
,
G. A.
Aucar
, and
M. C.
Ruiz de Azúa
,
J. Chem. Phys.
122
,
64103
(
2005
).
24.

We use atomic units based on the SI system throughout the paper.

25.
J.
Olsen
and
P.
Jørgensen
,
J. Chem. Phys.
82
,
3235
(
1985
);
in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Pt. II, p.
857
.
26.
J.
Vaara
,
K.
Ruud
,
O.
Vahtras
,
H.
Ågren
, and
J.
Jokisaari
,
J. Chem. Phys.
109
,
1212
(
1998
).
27.
J.
Vaara
,
K.
Ruud
, and
O.
Vahtras
,
J. Chem. Phys.
111
,
2900
(
1999
).
28.
N.
Nakagawa
,
S.
Shinada
, and
S.
Obinata
,
The sixth NMR Symposium
,
Kyoto
,
1967
(unpublished);
Y.
Nomura
,
Y.
Takeuchi
, and
N.
Nakagawa
,
Tetrahedron Lett.
10
,
639
(
1969
).
29.
I.
Morishima
,
K.
Endo
, and
T.
Yonezawa
,
J. Chem. Phys.
59
,
3356
(
1973
).
30.
M. I.
Volodicheva
and
T. K.
Rebane
,
Teor. Eksp. Khim.
14
,
447
(
1978
);
M. I.
Volodicheva
and
T. K.
Rebane
,
Theor. Exp. Chem.
14
,
348
(
1978
).
31.
A. A.
Cheremisin
and
P. V.
Schastnev
,
J. Magn. Reson. (1969-1992)
40
,
459
(
1980
).
32.
H.
Nakatsuji
,
H.
Takashima
, and
M.
Hada
,
Chem. Phys. Lett.
233
,
95
(
1995
).
33.
V. G.
Malkin
,
O. L.
Malkina
, and
D. R.
Salahub
,
Chem. Phys. Lett.
261
,
335
(
1996
).
34.
H.
Fukui
,
T.
Baba
, and
H.
Inomata
,
J. Chem. Phys.
105
,
3175
(
1996
);
H.
Fukui
,
T.
baba
, and
H.
Inomata
,
J. Chem. Phys.
106
,
298
(
1997
).
35.
W.
Kutzelnigg
,
E.
Ottschofski
, and
R.
Franke
,
J. Chem. Phys.
102
,
1740
(
1995
).
36.
O. L.
Malkina
,
B.
Schimmelpfennig
,
M.
Kaupp
,
B. A.
Hess
,
P.
Chandra
,
U.
Wahlgren
, and
V. G.
Malkin
,
Chem. Phys. Lett.
296
,
93
(
1998
).
37.
P.
Lantto
and
J.
Vaara
(unpublished).
38.
J.
Oddershede
,
P.
Jørgensen
, and
D. L.
Yeager
,
Comput. Phys. Rep.
2
,
33
(
1984
).
39.
See EPAPS Document No. E-JCPSA6-125-302643 for optimized equilibrium structures and the selection of the basis set of nuclear shielding calculations. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
40.
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
 et al, DALTON, a molecular electronic structure program, Release 1.2.1,
2001
.
41.
P.
Jørgensen
,
H. J. Aa.
Jensen
, and
J.
Olsen
,
J. Chem. Phys.
89
,
3654
(
1988
).
42.
J.
Olsen
,
D. L.
Yeager
, and
P.
Jørgensen
,
J. Chem. Phys.
91
,
381
(
1989
).
43.
O.
Vahtras
,
H.
Ågren
,
P.
Jørgensen
,
H. J. Aa.
Jensen
,
T.
Helgaker
, and
J.
Olsen
,
J. Chem. Phys.
97
,
9178
(
1992
).
44.
T.
Helgaker
and
P.
Jørgensen
,
J. Chem. Phys.
95
,
2595
(
1991
).
45.
K.
Ruud
,
T.
Helgaker
,
R.
Kobayashi
,
P.
Jørgensen
,
K. L.
Bak
, and
H. J. Aa.
Jensen
,
J. Chem. Phys.
100
,
8178
(
1994
).
46.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
47.
J.
Vaara
,
K.
Ruud
, and
O.
Vahtras
,
J. Comput. Chem.
20
,
1314
(
1999
).
48.
S.
Huzinaga
, technical report (
University of Alberta
, Edmonton,
1971
).
49.
W.
Kutzelnigg
,
U.
Fleischer
, and
M.
Schindler
, in
NMR Basic Principles and Progress
, edited by
P.
Diehl
,
E.
Fluck
,
H.
Günther
,
R.
Kosfeld
, and
J.
Seelig
(
Springer-Verlag
,
Berlin
,
1990
), Vol.
23
.
50.
K.
Fægri
,Jr.
and
J.
Almlöf
,
J. Comput. Chem.
7
,
396
(
1986
);
51.
S. S.
Gómez
and
R. H.
Romero
, MAGIC, molecular ab initio general-purpose iterative code,
Northeastern University
, Corrientes, Argentina,
2004
.
52.
H. J. Aa.
Jensen
,
T.
Saue
, and
L.
Visscher
 et al, DIRAC, a relativistic ab initio electronic structure program, Release DIRAC4.0,
2004
.
53.
K. G.
Dyall
,
Theor. Chem. Acc.
115
,
441
(
2006
).
54.
K.
Fægri
,Jr.
,
Theor. Chem. Acc.
105
,
252
(
2001
);
55.
J.
Vaara
and
P.
Pyykkö
,
J. Chem. Phys.
118
,
2973
(
2003
).
56.
R. E.
Stanton
and
S.
Havriliak
,
J. Chem. Phys.
81
,
1910
(
1984
).
57.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Chem. Phys. Lett.
174
,
25
(
1990
).
58.
M.
Pecul
,
T.
Saue
,
K.
Ruud
, and
A.
Rizzo
,
J. Chem. Phys.
121
,
3051
(
2004
).
59.
L.
Visscher
,
Theor. Chem. Acc.
96
,
68
(
1997
).
60.
J.
Vaara
,
J.
Lounila
,
K.
Ruud
, and
T.
Helgaker
,
J. Chem. Phys.
109
,
8388
(
1998
).
61.
C. J.
Jameson
,
A.
de Dios
, and
A. K.
Jameson
,
J. Chem. Phys.
95
,
9042
(
1991
).
62.
C. J.
Jameson
,
A.
de Dios
, and
A. K.
Jameson
,
Chem. Phys. Lett.
167
,
575
(
1990
).
63.
R. H.
Romero
and
S. S.
Gómez
,
Phys. Lett. A
353
,
190
(
2006
).
64.

There are numerical differences between the DALTON and MAGIC results for the FC/SZ-KE term arising due to the different SCF convergence characteristics of the two codes, for the heaviest presently considered systems. These are of no concern for the conclusions of the LMO calculations, as the latter are only used to obtain the relative contributions of the atomic orbitals of the heavy centers.

Supplementary Material

You do not currently have access to this content.