The interacting quantum atoms approach [IQA, as presented by Blanco et al, J. Chem. Theory Comput.1, 1096 (2005)] is applied to standard hydrogen bonded dimers. IQA is an interpretation tool based on a real space energy decomposition scheme fully consistent with the quantum theory of atoms in molecules. It provides a partition of every physical term present in the Hamiltonian into atomic and interatomic contributions. The procedure is orbital-free and self-contained, needing neither external references nor artificial intermediate states. Binding is the result of a competition between the destabilizing deformations suffered by the interacting fragments upon interaction and the stabilizing interaction energy itself. According to IQA, there is no incompatibility between the prevalent electrostatic image of hydrogen bonded systems and that favoring important covalent contributions. Depending on how we gather the different energetic terms, we may recover electrostatic or covalent pictures from the same underlying quantum mechanical description. Our results show that the nonclassical contributions to hydrogen bonding are spatially localized, involving only the H atom and its two nearest neighbors. IQA is well suited as a comparative tool. Its thin energetic decomposition allows us to recover exactly (or to a very good approximation) the quantities of the most widely used energy decomposition schemes. Such a comparison sheds light on the virtues and faults of the different methods and on the origin of the 50years old debate regarding the covalent/electrostatic nature of the hydrogen bond.

1.
W. M.
Latimer
and
W. H.
Rodebush
,
J. Am. Chem. Soc.
42
,
1410
(
1920
).
2.
G.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
,
New York
,
1997
).
3.
G.
Desiraju
and
T.
Steiner
,
The Weak Hydrogen Bond in Structural Chemistry and Biology
(
Oxford University Press
,
New York
,
1999
).
4.
J. W.
Steed
and
J. L.
Atwood
,
Supramolecular Chemistry
(
Wiley
,
New York
,
2000
).
5.
L.
Pauling
,
Proc. Natl. Acad. Sci. U.S.A.
14
,
259
(
1928
).
6.
L.
Pauling
,
The Nature of the Chemical Bond
, 3rd ed. (
Cornell University Press
,
Ithaca, N Y
,
1960
).
7.
P.
Kollman
,
J. Am. Chem. Soc.
99
,
4875
(
1977
).
8.
C. E.
Dykstra
,
Chem. Rev. (Washington, D.C.)
93
,
2339
(
1993
).
9.
D. A.
Buckingham
and
P. W.
Fowler
,
J. Chem. Phys.
79
,
6426
(
1983
).
10.
C.
Castiglioni
,
M.
Gussoni
, and
G.
Zerbi
,
J. Chem. Phys.
80
,
3916
(
1984
).
11.
A. P. L.
Rendell
,
G. B.
Bacskay
, and
N. S.
Hush
,
Chem. Phys. Lett.
117
,
400
(
1985
).
12.
M. A.
Spackman
,
J. Chem. Phys.
85
,
6587
(
1986
).
13.
A. J.
Stone
,
Chem. Phys. Lett.
83
,
233
(
1981
).
14.
A.
van der Vaart
,
B. D.
Bursulaya
,
C. L.
Brooks
 III
, and
K. M.
Merz
, Jr.
,
Int. J. Quantum Chem.
77
,
27
(
2000
).
15.
G.
Nadig
,
L. C.
van Zant
,
S. L.
Dixon
, and
K. M.
Merz
, Jr.
,
J. Am. Chem. Soc.
120
,
5593
(
1998
).
16.
P. R.
Blake
,
J. B.
Park
,
M. W. W.
Adams
, and
M. F.
Summers
,
J. Am. Chem. Soc.
114
,
4931
(
1992
).
17.
F.
Cordier
and
S.
Grzesiek
,
J. Am. Chem. Soc.
121
,
1601
(
1999
).
18.
S.
Golubev
,
I. G.
Shenderovich
,
S. N.
Smirnov
,
G. S.
Denisov
, and
H. H.
Limbach
,
Chem.-Eur. J.
5
,
492
(
1999
).
19.
E. F.
Isaacs
,
A.
Shukla
,
P. M.
Platzman
,
D. R.
Hamann
,
B.
Barbiellini
, and
C. A.
Tulk
,
Phys. Rev. Lett.
82
,
600
(
1999
).
20.
F.
Weinhold
,
J. Mol. Struct.
399
,
191
(
1997
).
21.
A. R.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
78
,
4066
(
1983
).
22.
A. R.
Reed
,
F.
Weinhold
,
L. A.
Curtiss
, and
D. J.
Pochatko
,
J. Chem. Phys.
84
,
5687
(
1986
).
23.
A. R.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev. (Washington, D.C.)
88
,
899
(
1988
).
24.
B.
King
and
F.
Weinhold
,
J. Chem. Phys.
103
,
333
(
1995
).
25.
W. H.
Thompson
and
J. T.
Hynes
,
J. Am. Chem. Soc.
122
,
6278
(
2000
).
26.
E. F.
Glendening
and
A.
Streitwieser
,
J. Chem. Phys.
100
,
2900
(
1994
).
27.
Y.
Zhang
,
G. Y.
Zhao
, and
X. Z.
You
,
J. Phys. Chem. A
101
,
2879
(
1997
).
28.
G. A.
Jefferey
and
W.
Saenger
,
Hydrogen Bonding in Biological Structures
(
Springer-Verlag
,
Heidelberg
,
1991
).
29.
W. D.
Arnold
and
E.
Oldfield
,
J. Am. Chem. Soc.
121
,
12835
(
2000
).
30.
F. A.
Baiocchi
,
W.
Reiher
, and
W.
Klemperer
,
J. Chem. Phys.
79
,
6428
(
1983
).
31.
T. K.
Ghanty
,
V. N.
Staroverov
,
P. R.
Koren
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
122
,
1210
(
2000
).
32.
A. A.
Rashin
,
I. A.
Topol
,
G. J.
Tawa
, and
S. K.
Burt
,
Chem. Phys. Lett.
335
,
327
(
2001
).
33.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev. (Washington, D.C.)
94
,
1887
(
1994
).
34.
K.
Morokuma
,
J. Chem. Phys.
55
,
1236
(
1977
).
35.
F. M.
Bickelhaupt
and
E. J.
Baerends
,
Rev. Comput. Chem.
15
,
1
(
2000
).
36.
G.
Frenking
,
F.
Wichmann
,
N.
Frölich
,
C.
Loschen
,
M.
Lein
,
J.
Frunzke
, and
V. M.
Rayón
,
Coord. Chem. Rev.
238–239
,
55
(
2003
).
37.
C.
Esterhuysen
and
G.
Frenking
,
Theor. Chem. Acc.
111
,
381
(
2004
).
38.
T.
Ziegler
and
A.
Rauk
,
Inorg. Chem.
18
,
1558
(
1979a
).
39.
T.
Ziegler
and
A.
Rauk
,
Inorg. Chem.
18
,
1755
(
1979
).
40.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
,
325
(
1976
).
41.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
42.
A.
Kovács
,
C.
Esterhuysen
, and
G.
Frenking
,
Chem.-Eur. J.
11
,
1813
(
2005
).
43.
I. G.
Kaplan
,
Theory of Intermolecular Interactions
(
Elsevier
,
Amsterdam
,
1986
).
44.
H.
Umeyama
and
K.
Morokuma
,
J. Am. Chem. Soc.
99
,
1316
(
1977
).
45.
U. C.
Singh
and
P. A.
Kollman
,
J. Chem. Phys.
80
,
353
(
1984
).
46.
Y.
Mo
,
J.
Gao
, and
D.
Peyerimhoff
,
J. Chem. Phys.
112
,
5530
(
2000
).
47.
R. F. W.
Bader
,
Atoms in Molecules
(
Oxford University Press
,
Oxford
,
1990
).
48.
R. F. W.
Bader
and
T. T.
Nguyen-Dang
,
Adv. Quantum Chem.
14
,
63
(
1981
).
49.
R. F. W.
Bader
,
T. T.
Nguyen-Dang
, and
Y.
Tal
,
Rep. Prog. Phys.
44
,
893
(
1981
).
50.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
51.
A.
Savin
,
R.
Nesper
,
S.
Wengert
, and
T. F.
Fassler
,
Angew. Chem., Int. Ed. Engl.
36
,
1809
(
1997
).
52.
B.
Silvi
and
A.
Savin
,
Nature (London)
371
,
683
(
1994
).
53.
M. T.
Carroll
and
R. F. W.
Bader
,
Mol. Phys.
65
,
695
(
1988
).
54.
A. C.
Legon
and
D. J.
Millen
,
Faraday Discuss. Chem. Soc.
73
,
71
(
1982
).
55.
A. C.
Legon
and
D. J.
Millen
,
Chem. Rev. (Washington, D.C.)
86
,
635
(
1986
).
56.
I.
Mayer
and
A.
Hamza
,
Theor. Chem. Acc.
105
,
360
(
2001
).
57.
P.
Salvador
,
M.
Duran
, and
I.
Mayer
,
J. Chem. Phys.
115
,
1153
(
2001
).
58.
A.
Martín Pendás
,
M. A.
Blanco
, and
E.
Francisco
,
J. Chem. Phys.
120
,
4581
(
2004
).
59.
A.
Martín Pendás
,
E.
Francisco
, and
M. A.
Blanco
,
J. Comput. Chem.
26
,
344
(
2005
).
60.
M. A.
Blanco
,
A.
Martín Pendás
, and
E.
Francisco
,
J. Chem. Theory Comput.
1
,
1096
(
2005
).
61.
U.
Koch
and
P. L. A.
Popelier
,
J. Phys. Chem.
99
,
9747
(
1995
).
62.
R. F. W.
Bader
,
J. Phys. Chem. A
102
,
7314
(
1998
).
63.
S.
Jenkins
and
I.
Morrison
,
Chem. Phys. Lett.
317
,
97
(
2000
).
64.
F.
Fuster
and
B.
Silvi
,
Theor. Chem. Acc.
104
,
13
(
2000
).
65.
E.
Espinosa
,
E.
Molins
, and
C.
Lecomte
,
Chem. Phys. Lett.
285
,
170
(
1998
).
66.
E.
Espinosa
,
I.
Alkorta
,
I.
Rozas
,
J.
Elguero
, and
E.
Molins
,
Chem. Phys. Lett.
336
,
457
(
2001
).
67.
C. M.
Breneman
,
T. R.
Thompson
,
M.
Rhem
, and
M.
Dung
,
Comput. Biol. Chem.
19
,
161
(
1995
).
68.
S.
Srebrenik
and
R. F. W.
Bader
,
J. Chem. Phys.
61
,
2536
(
1974
).
69.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
, 2nd ed. (
Academic Press
,
London
,
1992
).
70.
L.
Li
and
R. G.
Parr
,
J. Chem. Phys.
84
,
1704
(
1986
).
71.
V.
Luaña
and
L.
Pueyo
,
Phys. Rev. B
41
,
3800
(
1990
).
72.
V.
Luaña
,
A.
Martín Pendás
,
J. M.
Recio
,
E.
Francisco
, and
M.
Bermejo
,
Comput. Phys. Commun.
77
,
107
(
1993
).
73.
A.
Martín Pendás
,
E.
Francisco
, and
M. A.
Blanco
J. Phys. Chem. A (to be published).
74.
R. F. W.
Bader
and
M. E.
Stephens
,
J. Am. Chem. Soc.
97
,
7391
(
1975
).
75.
J.
Ángyán
,
M.
Loos
, and
I.
Mayer
,
J. Phys. Chem.
98
,
5244
(
1994
).
76.
X.
Fradera
,
M. A.
Austen
, and
R. F. W.
Bader
,
J. Phys. Chem. A
103
,
304
(
1999
).
77.
E.
Matito
,
J.
Poater
,
M.
Solà
,
M.
Duran
, and
P.
Salvador
,
J. Phys. Chem. A
109
,
9904
(
2005
).
78.
B. L.
Grigorenko
,
A. V.
Nemukhin
, and
V. A.
Apkarian
,
J. Chem. Phys.
108
,
4413
(
1998
).
79.
A. D.
Buckingham
,
P. W.
Fowler
, and
J. M.
Jutson
,
Chem. Rev. (Washington, D.C.)
88
,
963
(
1988
).
80.
P. W.
Fowler
and
A. D.
Buckingham
,
Mol. Phys.
50
,
1349
(
1983
).
81.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Clarendon
,
Oxford
,
1996
).
82.
O.
Gálvez
,
P. C.
Gómez
, and
L. F.
Pacios
,
J. Chem. Phys.
115
,
11166
(
2001
).
83.
K.
Szalewicz
,
S.
Cole
, and
R.
Bartlett
,
J. Chem. Phys.
89
,
3662
(
1988
).
84.
F. S.
Boys
and
D.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
85.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
 et al,
J. Comput. Chem.
14
,
1347
(
1993
).
86.
See EPAPS Document No. E-JCPSA6-125-307643 for geometries, basis sets, and total energies from the GAMESS calculations. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps. html).
87.
J.
Platts
,
Phys. Chem. Chem. Phys.
2
,
3115
(
2000
).
88.
J.
Platts
,
Phys. Chem. Chem. Phys.
2
,
973
(
2000
).
89.
A.
van der Vaart
and
K. M.
Merz
, Jr.
,
J. Chem. Phys.
116
,
7380
(
2002
).
90.
S.
Yamabe
and
K.
Morokuma
,
J. Am. Chem. Soc.
97
,
4458
(
1975
).
91.

Let us assume that the intermolecular CT is indeed restricted to these two atoms; reverting this CT and adding (subtracting) it to the B(H) atom we may estimate the atomic charges at the Hartree-Fock level before the CT takes place, but after polarization occurs. In Hartree-Fock HF-NH3, for instance, the total CT is about 46me from the PA to the PD, and these charges would be 0.840,+0.840,1.147,+0.383e for F1, H2, N3, and H4, respectively. As we see, two almost neutral fragments arise which justify our assumption. Comparing these charges to those of the free monomers, we find that the effect of the field on charge separation is about 70me in both fragments. The interfragment CT is then a rather local phenomenon in which 46me are transferred in the HB region from the N3 to the H2 atom.

92.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
93.
E. J.
Baerends
and
O. V.
Gritsenko
,
J. Phys. Chem. A
101
,
5383
(
1997
).
94.
J.
Poater
,
X.
Fradera
,
M.
Solà
,
M.
Duran
, and
S.
Simon
,
Chem. Phys. Lett.
369
,
248
(
2003
).
95.
B.
Jeziorski
,
A.
Moszynski
,
A.
Ratkiewicz
,
K.
Szalewicz
, and
H. L.
Williams
,
Methods and Techniques in Computational Chemistry: METECC-94
, edited by
B. E.
Clementi
(
STEF
,
Cagliari
,
1993
).
96.
F.
Maseras
and
K.
Morokuma
,
Chem. Phys. Lett.
195
,
500
(
1992
).
97.
K. A.
Peterson
and
T. H.
Dunning
,
J. Chem. Phys.
102
,
2032
(
1995
).
98.
A.
Daniel Boese
,
A.
Chandra
,
J. M. L.
Martin
, and
D.
Marx
,
J. Chem. Phys.
119
,
5965
(
2003
).
99.
T.
Seiji
and
H. P.
Lüthi
,
J. Chem. Phys.
114
,
3949
(
2001
).
100.
M.
Schütz
,
S.
Brdarski
,
P. O.
Widmark
,
R.
Lindh
, and
G.
Karlström
,
J. Chem. Phys.
107
,
4597
(
1997
).
101.
W.
Klopper
and
H. P.
Lüthi
,
Mol. Phys.
96
,
559
(
1999
).
102.
E. M.
Mas
,
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
113
,
6687
(
2000
).
103.
A. K.
Rappe
and
E. R.
Bernstein
,
J. Phys. Chem. A
104
,
6117
(
2000
).
104.
C. J.
Wormald
and
B.
Wurzberger
,
J. Chem. Thermodyn.
33
,
1193
(
2001
).
105.
P. D.
Soper
,
A. C.
Legon
,
W. G.
Read
, and
W. H.
Flygare
,
J. Chem. Phys.
76
,
292
(
1982
).

Supplementary Material

You do not currently have access to this content.