The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys.124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys.26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcalmol error for Coulomb and exchange, respectively. Timing results for single Coulomb energy-force calculations for (H2O)n, n=64, 128, 256, 512, and 1024, in periodic boundary conditions with PME and FFP at two different rms force tolerances are also presented. For the small and intermediate auxiliaries, PME shows faster times than FFP at both accuracies and the advantage of PME widens at higher accuracy, while for the largest auxiliary, the opposite occurs.

1.
D. A.
Case
,
T. E.
Cheatham
 III
,
T. A.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
, Jr.
,
A.
Onufirev
,
C.
Simmerling
,
B.
Wang
, and
R. J.
Woods
,
J. Comput. Chem.
26
,
1668
(
2005
).
2.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
J. Comput. Chem.
26
,
1669
(
2005
).
3.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhoff
,
A. E.
Mark
, and
H. J. C.
Berensen
,
J. Comput. Chem.
26
,
1701
(
2005
).
4.
M.
Christen
,
P. H.
Hünenberger
,
D.
Bakowies
 et al,
J. Comput. Chem.
26
,
1719
(
2005
).
5.
A. D.
MacKerrell
, Jr.
,
B.
Brooks
,
C. L.
Brooks
 III
,
N. B.
Roux
,
Y.
Won
, and
M.
Karplus
,
Encyclopedia of Computational Chemistry
(
Wiley
,
New York, NY
,
1998
).
6.
A. R.
Leach
,
Molecular Modelling: Principles and Applications
, 2nd ed. (
Prentice-Hall
,
Harlow, UK
,
2001
).
7.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
Oxford, UK
,
2000
).
8.
A. J.
Stone
,
Chem. Phys. Lett.
83
,
233
(
1981
).
9.
F.
Vigné-Maeder
and
P.
Claverie
,
J. Chem. Phys.
88
,
4934
(
1988
).
10.
G.
Náray-Szabó
and
G. G.
Ferenczy
,
Chem. Rev. (Washington, D.C.)
95
,
829
(
1995
).
11.
N.
Gresh
,
P.
Claverie
, and
A.
Pullman
,
Int. J. Quantum Chem.
22
,
253
(
1979
).
12.
N.
Gresh
,
J. Comput. Chem.
16
,
856
(
1995
).
13.
P.
Ren
and
J. W.
Ponder
,
J. Phys. Chem. B
107
,
5933
(
2003
).
14.
M. A.
Freitag
,
M. S.
Gordon
,
J. H.
Jensen
, and
W. J.
Stevens
,
J. Chem. Phys.
112
,
7300
(
2000
).
15.
J.-P.
Piquemal
,
N.
Gresh
, and
C.
Giessner-Prettre
,
J. Phys. Chem. A
107
,
10353
(
2003
).
16.
N.
Gresh
,
J.-P.
Piquemal
, and
M.
Krauss
,
J. Comput. Chem.
26
,
1113
(
2005
).
17.
A.
Gavezzotti
,
J. Phys. Chem. B
106
,
4145
(
2002
).
18.
G. A.
Cisneros
,
J.-P.
Piquemal
, and
T. A.
Darden
,
J. Chem. Phys.
123
,
044109
(
2005
).
19.
S. F.
Boys
and
I.
Shavit
,
A Fundamental Calculation of the Energy Surface for the System of Three Hydrogens Atoms
(
NTIS
,
Springfield, VA
,
1959
), AD212985.
20.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
4993
(
1979
).
21.
A. M.
Köster
,
P.
Calaminici
,
Z.
Gómez
, and
U.
Reveles
,
Reviews of Modern Quantum Chemistry: A Celebration of the Contribution of Robert G. Parr
(
World Scientific
,
Singapore
,
2002
).
22.
J.-P.
Piquemal
,
G. A.
Cisneros
,
P.
Reinhardt
,
N.
Gresh
, and
T. A.
Darden
,
J. Chem. Phys.
124
,
104101
(
2006
).
23.
P. S.
Bagus
,
K.
Hermann
, and
C. W.
Bauschlicher
, Jr.
,
J. Chem. Phys.
80
,
4378
(
1984
).
24.
J.-P.
Piquemal
,
A.
Marquez
,
O.
Parisel
, and
C.
Giessner-Prettre
,
J. Comput. Chem.
26
,
1052
(
2005
).
25.
R. J.
Wheatley
and
S. L.
Price
,
Mol. Phys.
69
,
507
(
1990
).
26.
C.
Domene
,
P. W.
Fowler
,
M.
Wilson
,
P.
Madden
, and
R. J.
Wheatley
,
Chem. Phys. Lett.
333
,
403
(
2001
).
27.
G. S.
Tschumper
,
M. L.
Leininger
,
B. C.
Hoffman
,
E. F.
Valeev
,
H. F.
Schaffer
 III
, and
M.
Quack
,
J. Chem. Phys.
116
,
690
(
2002
).
28.
J. G. C. M.
van Duijneveldt–van de Rijdt
,
W. T. M.
Mooij
, and
F. B.
Duijneveldt
,
Phys. Chem. Chem. Phys.
5
,
1169
(
2003
).
29.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran77: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
New York, NY
,
1992
).
30.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6692
(
2005
).
31.
T.
Helgaker
,
P. J.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
Chichester, England
,
2000
).
32.
A. M.
Köster
,
J. Chem. Phys.
118
,
9943
(
2003
).
33.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Comput. Phys.
26
,
218
(
1978
).
34.
M.
Tachikawa
and
M.
Shiga
,
Phys. Rev. E
64
,
056707
(
2001
).
35.
S. B.
Trickey
,
J. A.
Alfort
, and
J. C.
Boettger
,
Computational Materials Science
(
Elsevier B. V.
,
Amsterdam
,
2004
).
36.
C.
Sagui
,
L. G.
Pedersen
, and
T. A.
Darden
,
J. Chem. Phys.
120
,
73
(
2004
).
37.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
38.
A. M.
Köster
,
J. Chem. Phys.
104
,
4114
(
1996
).
39.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Chem. Theory Comput.
2
,
400
(
2006
).
40.
A. J.
Misquitta
and
A. J.
Stone
,
J. Chem. Phys.
124
,
024111
(
2006
).
41.
G.
Arfken
and
H.
Weber
,
Mathematical Methods for Physicists
(
Academic
,
San Diego, CA
,
1996
).
42.
A.
Toukmaji
,
C.
Sagui
,
J.
Board
, and
T. A.
Darden
,
J. Chem. Phys.
113
,
10913
(
2000
).
43.
J. G.
Ángyán
,
C.
Chipot
,
F.
Dehez
,
C.
Hätig
,
G.
Jansen
, and
C.
Millot
, OPEP, a tool for the optimal partitioning of electric properties, Version 1.0-β, Equipe de Chimie and Biochimie Théoretiques, Unité Mixte de Recherche CNRS/UHP No. 7565, Université Henri Poincaré, France,
2005
.
44.
M.
Challacombe
,
E.
Schwgler
, and
J.
Almlöf
,
Computational Chemistry: Review of Current Trends
(
World Scientific
,
Singapore
,
1996
).
45.
G. A.
Cisneros
,
J.-P.
Piquemal
, and
T. A.
Darden
,
J. Phys. Chem. B
110
,
13682
(
2006
).
46.
A. J.
Stone
,
J. Chem. Theory Comput.
1
,
1128
(
2005
).
47.
P. L. A.
Popelier
,
L.
Joubert
, and
D. S.
Kosov
,
J. Phys. Chem. A
105
,
8524
(
2001
).
48.
A.
Volkov
and
P.
Coppens
,
J. Comput. Chem.
25
,
921
(
2004
).
49.
E.
Clementi
,
Computational Aspects of Large Chemical Systems
(
Springer
,
New York, NY
,
1980
).
50.
M.
Dupuis
,
A.
Marquez
, and
E. R.
Davidson
, HONDO95.3, quantum chemistry program exchange (QCPE), Indiana University, Bloomington, IN,
1995
.
51.
L.
Fusti-Molnar
and
P.
Pulay
,
J. Chem. Phys.
117
,
7827
(
2002
).
52.
D.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Theor. Chem. Acc.
103
,
124
(
1999
).
53.
M.
Krack
and
M.
Parrinello
,
Phys. Chem. Chem. Phys.
2
,
2105
(
2000
).
54.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
Wiley Interscience
,
New York, NY
,
1977
).
55.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
8
,
3072
(
2006
).
56.
U.
Essmann
,
L.
Perera
,
M.
Berkowitz
,
T. A.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
57.
D.
York
and
W.
Yang
,
J. Chem. Phys.
101
,
3298
(
1994
).
58.
Y. B.
Shan
,
J. L.
Klepis
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
,
J. Chem. Phys.
122
,
054101
(
2005
).
59.
E. R.
Smith
,
J. Stat. Phys.
77
,
449
(
1994
).
60.
C.
Sagui
and
T. A.
Darden
,
J. Chem. Phys.
114
,
6578
(
2001
).
61.
R. D.
Amos
,
I. L.
Alberts
,
J. S.
Andrews
, et al, CADPAC, the Cambridge analytic derivatives package, Issue 6, Cambridge University, Cambridge, UK,
1995
.
62.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
63.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
64.
J.
Andzelm
and
E.
Wimmer
,
J. Chem. Phys.
96
,
1280
(
1992
).
65.
N.
Godbout
and
J.
Andzelm
, DGAUSS, Versions 2.0, 2.1, 2.3, and 4.0, the file that contains the A1 and P1 auxiliary basis sets can be obtained from the CCL WWW site at http://www.ccl.net/cca/data/basis-sets/DGauss/index.shtml, Computational Chemistry List, Ltd., Columbus, OH,
1998
.
66.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03, Gaussian, Inc., Pittsburgh, PA,
2003
.
67.
D. E.
Berholdt
and
R. J.
Harrison
,
J. Chem. Phys.
109
,
1593
(
1998
).
68.
W.
Jorgensen
,
J.
Chandrasekhar
,
J.
Madura
,
R.
Impey
, and
M.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
69.
J.
Ponder
, TINKER, software tools for molecular design, Version 3.6, the most updated version for the TINKER program can be obtained from J. Ponder’s WWW site at http://dasher.wustl.edu/tinker, Washington University, St. Louis, MO,
1998
.
70.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 98, Revision A.8, Gaussian, Inc., Pittsburgh, PA,
1998
.
71.
R.
Ercolessi
and
J. B.
Adams
,
Europhys. Lett.
26
,
583
(
1994
).
72.
A.
Laio
,
S.
Bernard
,
C. L.
Chiarotti
,
S.
Scandolo
, and
E.
Tosatti
,
Science
287
,
1027
(
2000
).
73.

Also, it is important to note that we rely on the exponents of the diffuse functions to be smaller than α0 to ensure uniform convergence in the sums of Eq. (29). That is, if 1αd>1α0 these sums converge uniformly.

74.
See EPAPS Document No. E-JCPSA6-125-309641 for the optimal fitting parameters for all molecules tested in this study; intermolecular Coulomb and exchange-repulsion results for individual water dimers; K parameters for exchange repulsion for all fragments; scales for density comparison cubes; Coulomb and overlap forces for CSOV and the three ABSs. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Supplementary Material

You do not currently have access to this content.