A Brownian dynamics simulation technique is presented where a Fourier-based NlogN approach is used to calculate hydrodynamic interactions in confined flowing polymer systems between two parallel walls. A self-consistent coarse-grained Langevin description of the polymer dynamics is adopted in which the polymer beads are treated as point forces. Hydrodynamic interactions are therefore included in the diffusion tensor through a Green’s function formalism. The calculation of Green’s function is based on a generalization of a method developed for sedimenting particles by Mucha et al. [J. Fluid Mech.501, 71 (2004)]. A Fourier series representation of the Stokeslet that satisfies no-slip boundary conditions at the walls is adopted; this representation is arranged in such a way that the total O(N2) contribution of bead-bead interactions is calculated in an O(NlogN) algorithm. Brownian terms are calculated using the Chebyshev polynomial approximation proposed by Fixman [Macromolecules19, 1195 (1986); 19, 1204 (1986)] for the square root of the diffusion tensor. The proposed Brownian dynamics simulation methodology scales as O(N1.25logN). Results for infinitely dilute systems of dumbbells are presented to verify past predictions and to examine the performance and numerical consistency of the proposed method.

1.
O. S.
Andersen
,
Biophys. J.
77
,
2899
(
1999
).
2.
C. F.
Chou
,
R. H.
Austin
,
O.
Bakajin
,
J. O.
Tegenfeldt
,
J. A.
Castelino
,
S. S.
Chan
,
E. C.
Cox
,
H.
Craighead
,
N.
Darnton
,
T.
Duke
,
J.
Han
, and
S.
Turner
,
Electrophoresis
21
,
81
(
2000
).
3.
M.
Sauer
,
B.
Angerer
,
W.
Ankenbauer
,
Z.
Földes-Papp
,
F.
Göbel
,
K.
Han
,
R.
Rigler
,
A.
Schultz
,
J.
Wolfrum
, and
C.
Zander
,
J. Biotechnol.
86
,
281
(
2001
).
4.
J. O.
Tegenfeldt
,
C.
Prinz
,
H.
Cao
,
R. L.
Huang
,
R. H.
Austin
,
S. Y.
Chou
,
E. C.
Cox
, and
J. C.
Sturm
,
Anal. Bioanal. Chem.
378
,
1678
(
2004
).
5.
L.
Fang
,
H.
Hu
, and
R. G.
Larson
,
J. Rheol.
49
,
127
(
2005
).
6.
R. M.
Jendrejack
,
E. T.
Dimalanta
,
D. C.
Schwartz
,
M. D.
Graham
, and
J.
de Pablo
,
Phys. Rev. Lett.
91
,
038102
(
2003
).
7.
R. M.
Jendrejack
,
D. C.
Schwartz
,
M. D.
Graham
, and
J. J.
de Pablo
,
J. Chem. Phys.
119
,
1165
(
2003
).
8.
R. M.
Jendrejack
,
D. C.
Schwartz
,
J. J.
de Pablo
, and
M. D.
Graham
,
J. Chem. Phys.
120
,
2513
(
2004
).
9.
Y.-L.
Chen
,
M. D.
Graham
,
J. J.
de Pablo
,
G. C.
Randall
,
M.
Gupta
, and
P. S.
Doyle
,
Phys. Rev. E
70
,
060901
(
2004
).
10.
H. B.
Ma
and
M. D.
Graham
,
Phys. Fluids
17
,
083103
(
2005
).
11.
J.
Blake
,
Proc. Cambridge Philos. Soc.
70
,
30
(
1971
).
12.
N.
Liron
and
S.
Mochon
,
J. Eng. Math.
10
,
287
(
1976
).
13.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Kluwer
,
Dordrecht
,
1991
).
14.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1992
).
15.
R.
Jendrejack
,
M.
Graham
, and
J. J.
de Pablo
,
J. Chem. Phys.
113
,
2894
(
2000
).
16.
M.
Fixman
,
Macromolecules
19
,
1195
(
1986
).
17.
M.
Fixman
,
Macromolecules
19
,
1204
(
1986
).
18.
O.
Usta
,
A.
Ladd
, and
J.
Butler
,
J. Chem. Phys.
122
,
4902
(
2005
).
19.
X.
Fan
,
N.
Phan-Thien
,
N. T.
Yong
,
X.
Wu
, and
D.
Xu
,
Phys. Fluids
15
,
11
(
2003
).
20.
C.
Stoltz
,
J.
de Pablo
, and
M.
Graham
,
J. Rheol.
50
,
137
(
2006
).
21.
P. J.
Mucha
,
S.-Y.
Tee
,
D. A.
Weitz
,
B. I.
Shraiman
, and
M. P.
Brenner
,
J. Fluid Mech.
501
,
71
(
2004
).
22.
R. B.
Bird
,
C.
Curtiss
,
F. R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymer Liquids: Kinetic Theory
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol.
2
.
23.
H.-C.
Öttinger
,
Stochastic Processes in Polymeric Fluids
(
Springer
,
Berlin
,
1996
).
24.
C.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1985
).
25.
H.
Risken
,
The Fokker-Planck Equation
(
Springer
,
Berlin
,
1989
).
26.
L.
Landau
and
E.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Butterworth-Heinemann
,
Oxford
,
1987
).
27.
H.-C.
Öttinger
,
Beyond Equilibrium Thermodynamics
(
Wiley-Interscience
,
New York
,
2005
).
28.
L.
Reichl
,
A Modern Course in Statistical Physics
2nd ed. (
Wiley-Interscience
,
New York
,
1998
).
29.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
Oxford
,
2001
).
30.
S.
Kim
and
S.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Butterworth-Heinemann
,
Boston
,
1991
).
31.
H.
Power
and
L. C.
Wrobel
,
Boundary Integral Methods in Fluid Mechanics
(
Computational Mechanics
,
Southampton
,
1995
).
32.
J.
Rotne
and
S.
Prager
,
J. Chem. Phys.
50
,
4831
(
1969
).
33.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
34.
I.
Bronstein
,
K.
Semendjajew
,
G.
Musiol
, and
H.
Muehlig
,
Taschenbuch der Mathematik
(
Verlag Harri-Deutsch
,
Frankfurt am Main
,
2001
).
35.
C.
Canuto
,
M.
Hussaini
,
A.
Quarteroni
, and
T.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
1988
).
36.
J.
Hernández-Ortiz
,
C.
Stoltz
, and
M.
Graham
,
Phys. Rev. Lett.
95
,
204501
(
2005
).
You do not currently have access to this content.