The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys.24, 979 (1956);98, 7170 (1994);28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys.84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%–10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

1.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
);
N.
Sutin
,
Acc. Chem. Res.
5
,
275
(
1982
).
2.
F. D.
Lewis
,
R. L.
Letsinger
, and
M. R.
Wasielewski
,
Acc. Chem. Res.
34
,
159
(
2001
);
[PubMed]
I. R.
Gould
and
S.
Farid
,
Acc. Chem. Res.
29
,
522
(
1996
);
F. O.
Raineri
and
H. L.
Friedman
,
Adv. Chem. Phys.
107
,
81
(
1999
).
3.
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
(
1956
);
R. A.
Marcus
,
J. Chem. Phys.
98
,
7170
(
1994
).
4.
N. S.
Hush
,
J. Chem. Phys.
28
,
962
(
1958
).
5.
G. R.
Fleming
and
P. G.
Wolynes
,
Phys. Today
43
,
36
(
1990
).
6.
X.
Xuan
,
H.
Zhang
,
J.
Wang
, and
H.
Wang
,
J. Phys. Chem. A
108
,
7513
(
2004
).
7.
J.
Zhu
,
R.
Ma
,
Y.
Lu
, and
G.
Stell
,
J. Chem. Phys.
123
,
224505
(
2005
).
8.
W.
Schmickler
and
M. T. M.
Koper
,
Electrochem. Commun.
1
,
402
(
1999
);
A.
Calhoun
,
M. T. M.
Koper
, and
G. A.
Voth
,
J. Phys. Chem. B
103
,
3442
(
1999
).
9.
J.
Zhu
and
J. C.
Rasaiah
,
J. Chem. Phys.
101
,
9966
(
1994
);
J. C.
Rasaiah
and
J.
Zhu
,
AIP Conf. Proc.
298
,
421
(
1993
);
J.
Zhu
and
J. C.
Rasaiah
,
J. Chem. Phys.
95
,
3325
(
1991
).
10.
B. S.
Brunschwig
,
J.
Logan
,
M. D.
Newton
, and
N.
Sutin
,
J. Am. Chem. Soc.
102
,
5798
(
1980
).
11.
R. A.
Marcus
and
H.
Sumi
,
J. Chem. Phys.
84
,
4894
(
1986
).
12.
R. A.
Marcus
,
Faraday Discuss. Chem. Soc.
29
,
21
(
1960
).
13.
S. K.
Door
,
R. B.
Dyer
,
P. O.
Scoutland
, and
W. H.
Woodruff
,
J. Am. Chem. Soc.
115
,
6398
(
1993
);
J. D.
Stong
,
J. M.
Burk
,
P.
Daly
,
P.
Wright
, and
T. G.
Spiro
,
J. Am. Chem. Soc.
102
,
5815
(
1980
).
14.
G. C.
Walker
,
P. F.
Barbara
,
S. K.
Boom
,
Y.
Dong
, and
J. T.
Hupp
,
J. Phys. Chem.
95
,
5712
(
1991
).
15.
J. M.
Saveant
,
J. Am. Chem. Soc.
114
,
10595
(
1992
);
J. M.
Saveant
,
J. Am. Chem. Soc.
109
,
6788
(
1987
).
You do not currently have access to this content.