We study the effects of size polydispersity on the gas-liquid phase behavior of mixtures of sticky hard spheres. To achieve this, the system of coupled quadratic equations for the contact values of the partial cavity functions of the Percus-Yevick solution [R. J. Baxter, J. Chem. Phys.49, 2770 (1968)] is solved within a perturbation expansion in the polydispersity, i.e., the normalized width of the size distribution. This allows us to make predictions for various thermodynamic quantities which can be tested against numerical simulations and experiments. In particular, we determine the leading order effects of size polydispersity on the cloud curve delimiting the region of two-phase coexistence and on the associated shadow curve; we also study the extent of size fractionation between the coexisting phases. Different choices for the size dependence of the adhesion strengths are examined carefully; the Asakura-Oosawa model [J. Chem. Phys.22, 1255 (1954)] of a mixture of polydisperse colloids and small polymers is studied as a specific example.

3.
J.
Lyklema
,
Fundamental of Interface and Colloid Science
(
Elsevier
,
New York
,
2005
).
4.
J.
Lyklema
,
Fundamental of Interface and Colloid Science
(
Elsevier
,
New York
,
2000
).
5.
R. J.
Baxter
,
J. Chem. Phys.
49
,
2770
(
1968
).
6.
R. J.
Baxter
, in
Physical Chemistry: An Advanced Treatise
, edited by
D.
Henderson
(
Academic
,
New York
,
1971
), Vol.
84
, Chap. 4.
7.
R. O.
Watts
,
D.
Henderson
, and
R. J.
Baxter
,
Adv. Chem. Phys.
21
,
421
(
1971
).
8.
R. J.
Baxter
,
J. Chem. Phys.
52
,
4559
(
1970
).
10.
J. W.
Perram
and
E. R.
Smith
,
Chem. Phys. Lett.
35
,
138
(
1975
).
11.
B.
Barboy
and
R.
Tenne
,
Chem. Phys.
38
,
369
(
1979
).
12.
C.
Robertus
,
W. H.
Philipse
,
J. G. H.
Joosten
, and
Y. K.
Levine
,
J. Chem. Phys.
90
,
4482
(
1989
).
13.
S. H.
Chen
,
J.
Rouch
,
F.
Sciortino
, and
P.
Tartaglia
,
J. Phys.: Condens. Matter
6
,
10855
(
1994
).
14.
R.
Piazza
,
V.
Peyre
, and
V.
Degiorgio
,
Phys. Rev. E
58
,
R2733
(
1998
).
15.
P.
Prinsen
and
T.
Odijk
,
J. Chem. Phys.
121
,
6525
(
2004
).
16.
G.
Stell
,
J. Stat. Phys.
63
,
1203
(
1991
).
17.
D.
Gazzillo
and
A.
Giacometti
,
J. Chem. Phys.
120
,
4742
(
2004
).
18.
R.
Fantoni
,
D.
Gazzillo
, and
A.
Giacometti
,
J. Chem. Phys.
122
,
034901
(
2005
).
19.
M. A.
Miller
and
D.
Frenkel
,
Phys. Rev. Lett.
90
,
135702
(
2003
).
20.
M. A.
Miller
and
D.
Frenkel
,
J. Chem. Phys.
121
,
535
(
2004
).
21.
M. A.
Miller
and
D.
Frenkel
,
J. Phys.: Condens. Matter
16
,
S4901
(
2004
).
22.
R. M. L.
Evans
,
J. Chem. Phys.
114
,
1915
(
2001
).
23.
R.
Fantoni
,
D.
Gazzillo
, and
A.
Giacometti
,
Phys. Rev. E
72
,
011503
(
2005
).
24.
25.
S.
Auer
and
D.
Frenkel
,
Nature (London)
413
,
711
(
2001
).
26.
P. N.
Pusey
and
W.
van Megen
,
Phys. Rev. Lett.
59
,
2083
(
1987
).
27.
W. C. K.
Poon
,
F.
Renth
,
R. M. L.
Evans
,
D. J.
Fairhurst
,
M. E.
Cates
, and
P. N.
Pusey
,
Phys. Rev. Lett.
83
,
1239
(
1999
).
28.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
,
Phys. Rev. A
4
,
1597
(
1971
).
29.
P.
Sollich
,
J. Phys.: Condens. Matter
14
,
R79
(
2002
).
30.
P.
Sollich
and
M. E.
Cates
,
Phys. Rev. Lett.
80
,
1365
(
1998
).
31.
P.
Sollich
,
P. B.
Warren
, and
M. E.
Cates
,
Adv. Chem. Phys.
116
,
265
(
2001
).
32.
N. B.
Wilding
,
M.
Fasolo
, and
P.
Sollich
,
J. Chem. Phys.
121
,
6887
(
2004
).
33.
P.
Sollich
(unpublished).
34.
D.
Gazzillo
,
A.
Giacometti
,
R.
Fantoni
, and
P.
Sollich
,
Phys. Rev. E
(in press).
35.
S.
Asakura
and
F.
Oosawa
,
J. Chem. Phys.
22
,
1255
(
1954
).
36.
J. L.
Barrat
and
J. P.
Hansen
,
Basic Concepts for Simple and Complex Liquids
(
Cambridge University Press
,
Cambridge
,
2003
).
37.
T.
Boublík
,
J. Chem. Phys.
53
,
471
(
1970
).
38.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, Jr.
,
J. Chem. Phys.
54
,
1523
(
1971
).
39.

Note that the energy route to the equation of state of HS fluids is ill defined since the internal energy is just that of the ideal gas. So in the PY approximation one could use (Ref. 47) either the compressibility pressure PPY(c) or the virial pressure PPY(v). For a mixture of a discrete number of species it is known that the BMCSL pressure PBMCSL=(2PPY(c)+PPY(v))3 is more accurate than either of these two limits. Recently, the equivalence between the energy and virial routes to the equation of state for the one-component HS fluid has been shown in Ref. 48. We use the BMCSL expression throughout, except in Fig. 1, where the PY compressibility pressure is used for ease of comparison with earlier work (Ref. 18).

40.
S. E.
Phan
,
W. B.
Russel
,
J. X.
Zhu
, and
P. M.
Chaikin
,
J. Chem. Phys.
108
,
9789
(
1998
).
41.
H. N. W.
Lekkerkerker
,
W. C. K.
Poon
,
P. N.
Pusey
,
A.
Stroobants
, and
P. B.
Warren
,
Europhys. Lett.
20
,
559
(
1992
).
42.
M.
Fasolo
and
P.
Sollich
,
J. Chem. Phys.
122
,
074904
(
2005
).
43.
N. B.
Wilding
and
P.
Sollich
,
J. Chem. Phys.
116
,
7116
(
2002
).
44.
N. B.
Wilding
and
P.
Sollich
,
Europhys. Lett.
67
,
219
(
2004
).
45.
N. B.
Wilding
,
P.
Sollich
, and
M.
Fasolo
,
Phys. Rev. Lett.
95
,
155701
(
2005
).
46.
M.
Fasolo
and
P.
Sollich
,
Phys. Rev. E
70
,
041410
(
2004
).
47.
J. J.
Salacuse
and
G.
Stell
,
J. Chem. Phys.
77
,
3714
(
1982
).
48.
A.
Santos
,
J. Chem. Phys.
123
,
104102
(
2005
).
You do not currently have access to this content.