Multireference configuration interaction (MRCI) calculations have been performed for pyrrole with the aim of providing an explanation for the experimentally observed photochemical deactivation processes. Potential energy curves and minima on the crossing seam were determined using the analytic MRCI gradient and nonadiabatic coupling features of the COLUMBUS program system. A new deactivation mechanism based on an out-of-plane ring deformation is presented. This mechanism directly couples the charge transfer π1π* and ground states. It may be responsible for more than 50% of the observed photofragments of ππ*-excited pyrrole. The ring deformation mechanism should act complementary to the previously proposed NH-stretching mechanism, thus offering a more complete interpretation of the pyrrole photodynamics.

1.
M. H.
Palmer
,
I. C.
Walker
, and
M. F.
Guest
,
Chem. Phys.
238
,
179
(
1998
).
2.
L.
Serrano-Andrés
,
M.
Merchán
,
I.
Nebotgil
,
B. O.
Roos
, and
M.
Fulscher
,
J. Am. Chem. Soc.
115
,
6184
(
1993
).
3.
P.
Celani
and
H. J.
Werner
,
J. Chem. Phys.
119
,
5044
(
2003
).
4.
O.
Christiansen
,
J.
Gauss
,
J. F.
Stanton
, and
P.
Jørgensen
,
J. Chem. Phys.
111
,
525
(
1999
).
5.
D. J.
Tozer
,
R. D.
Amos
,
N. C.
Handy
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Mol. Phys.
97
,
859
(
1999
).
6.
J.
Wan
,
J.
Meller
,
M.
Hada
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
113
,
7853
(
2000
).
7.
C.-G.
Zahn
and
D. A.
Dixon
,
J. Mol. Spectrosc.
216
,
81
(
2002
).
8.
M. H.
Palmer
and
P. J.
Wilson
,
Mol. Phys.
101
,
2391
(
2003
).
9.
B. O.
Roos
,
P.-Å.
Malmqvist
,
V.
Molina
,
L.
Serrano-Andrés
, and
M.
Merchán
,
J. Chem. Phys.
116
,
7526
(
2002
).
10.
D. A.
Blank
,
S. W.
North
, and
Y. T.
Lee
,
Chem. Phys.
187
,
35
(
1994
).
11.
A. L.
Sobolewski
,
W.
Domcke
,
C.
Dedonder-Lardeux
, and
C.
Jouvet
,
Phys. Chem. Chem. Phys.
4
,
1093
(
2002
).
12.
V.
Vallet
,
Z. G.
Lan
,
S.
Mahapatra
,
A. L.
Sobolewski
, and
W.
Domcke
,
Faraday Discuss.
127
,
283
(
2004
).
13.
V.
Vallet
,
Z. G.
Lan
,
S.
Mahapatra
,
A. L.
Sobolewski
, and
W.
Domcke
,
J. Chem. Phys.
123
,
144307
(
2005
).
14.
J.
Wei
,
A.
Kuczmann
,
J.
Riedel
,
F.
Renth
, and
F.
Temps
,
Phys. Chem. Chem. Phys.
5
,
315
(
2003
).
15.
J.
Wei
,
J.
Riedel
,
A.
Kuczmann
,
F.
Renth
, and
F.
Temps
,
Faraday Discuss.
127
,
267
(
2004
).
16.
H.
Lippert
,
H. H.
Ritze
,
I. V.
Hertel
, and
W.
Radloff
,
ChemPhysChem
5
,
1423
(
2004
).
17.
A. J.
van den Brom
,
M.
Kapelios
,
T. N.
Kitsopoulos
,
N. H.
Nahler
,
B.
Cronin
, and
M. N. R.
Ashfold
,
Phys. Chem. Chem. Phys.
7
,
892
(
2005
).
18.
A. B.
Trofimov
,
H.
Köppel
, and
J.
Schirmer
,
J. Chem. Phys.
109
,
1025
(
1998
).
19.
H.
Köppel
,
E. V.
Gromov
, and
A. B.
Trofimov
,
Chem. Phys.
304
,
35
(
2004
).
20.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 03,
Gaussian, Inc.
, Wallingford, CT,
2004
.
21.
A.
Bunge
,
J. Chem. Phys.
53
,
20
(
1970
).
22.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
23.
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
72
,
278
(
1980
).
24.
R.
Shepard
, in
Modern Electronic Structure Theory
, edited by
D. R.
Yarkony
(
World Scientific
,
Singapore
,
1995
), Pt. 1, p.
345
.
25.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
26.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
27.
R.
Shepard
,
H.
Lischka
,
P. G.
Szalay
,
T.
Kovar
, and
M.
Ernzerhof
,
J. Chem. Phys.
96
,
2085
(
1992
).
28.
H.
Lischka
,
M.
Dallos
, and
R.
Shepard
,
Mol. Phys.
100
,
1647
(
2002
).
29.
H.
Lischka
,
M.
Dallos
,
P. G.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
30.
M.
Dallos
,
H.
Lischka
,
R.
Shepard
,
D. R.
Yarkony
, and
P. G.
Szalay
,
J. Chem. Phys.
120
,
7330
(
2004
).
31.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
32.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
33.
H.
Lischka
,
R.
Shepard
,
F. B.
Brown
, and
I.
Shavitt
,
Int. J. Quantum Chem., Quantum Chem. Symp.
15
,
91
(
1981
).
34.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
D. C.
Comeau
,
M.
Pepper
,
H.
Lischka
,
P. G.
Szalay
,
R.
Ahlrichs
,
F. B.
Brown
, and
J.
Zhao
,
Int. J. Quantum Chem., Quantum Chem. Symp.
22
,
149
(
1988
).
35.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
 et al, COLUMBUS, Release 5.9.1, an ab initio electronic structure program,
2006
, see http://www.univie.ac.at/columbus
36.
H.
Lischka
,
R.
Shepard
,
R. M.
Pitzer
 et al,
Phys. Chem. Chem. Phys.
3
,
664
(
2001
).
37.
T.
Helgaker
,
H. J.
Aa. Jensen
,
P.
Jørgensen
 et al, DALTON, Release 1.0, an ab initio electronic structure program,
1997
.
38.
S.
Perun
,
A. L.
Sobolewski
, and
W.
Domcke
,
J. Am. Chem. Soc.
127
,
6257
(
2005
).
39.
M.
Barbatti
and
H.
Lischka
,
J. Am. Chem. Soc.
(in press).
40.
C.
Marian
,
J. Chem. Phys.
122
,
104314
(
2005
).
41.
M.
Barbatti
,
A. J. A.
Aquino
, and
H.
Lischka
,
Mol. Phys.
104
,
1053
(
2006
).
42.
M.
Barbatti
,
J.
Paier
, and
H.
Lischka
,
J. Chem. Phys.
121
,
11614
(
2004
).
43.
G.
Zechmann
,
M.
Barbatti
,
H.
Lischka
,
J.
Pittner
, and
V.
Bonačić-Koutecký
,
Chem. Phys. Lett.
418
,
377
(
2006
).
44.
See EPAPS Document No. E-JCPSA6-125-311641 for Cartesian coordinates and energies of the MXSs. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).

Supplementary Material

You do not currently have access to this content.