The forward-backward (FB) approximation as applied to semiclassical initial value representations (SCIVR’s) has enabled the practical application of the SCIVR methodology to systems with many degrees of freedom. However, to date a systematic representation of the exact quantum dynamics in terms of the FB-SCIVR has proven elusive. In this paper, we provide a new derivation of a forward-backward phase space SCIVR expression (FBPS-SCIVR) derived previously by Thompson and Makri [Phys. Rev. E59, R4729 (1999)]. This enables us to represent quantum correlation functions exactly in terms of a series whose leading order term is the FBPS-SCIVR expression. Numerical examples for systems with over 50degrees of freedom are presented for the spin boson problem. Comparison of the FBPS-SCIVR with the numerically exact results of Wang [J. Chem. Phys.113, 9948 (2000)] obtained using a multiconfigurational time dependent method shows that the leading order FBPS-SCIVR term already provides an excellent approximation.

1.
H.
Wang
,
J. Chem. Phys.
113
,
9948
(
2000
).
2.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
3.
D. V.
Shalashilin
and
M. S.
Child
,
Chem. Phys.
304
,
103
(
2004
) and references therein.
4.
Y.
Wu
,
M. F.
Herman
, and
V.
Batista
,
J. Chem. Phys.
122
,
114114
(
2005
).
5.
Y.
Wu
and
V.
Batista
,
J. Chem. Phys.
118
,
6720
(
2003
).
6.
J. T.
Stockburger
,
Chem. Phys.
296
,
159
(
2004
).
7.
Y.
Zhou
,
Y.
Yan
, and
J.
Shao
,
Europhys. Lett.
72
,
334
(
2005
).
8.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
).
9.
J. H.
Van Vleck
,
Proc. Natl. Acad. Sci. U.S.A.
14
,
178
(
1928
).
10.
E.
Heller
,
J. Chem. Phys.
75
,
2923
(
1981
).
11.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
12.
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
,
J. Chem. Phys.
84
,
326
(
1986
).
13.
F.
Grossmann
,
Comments At. Mol. Phys.
34
,
141
(
1999
).
14.
D. J.
Tannor
and
S.
Garaschuk
,
Annu. Rev. Phys. Chem.
51
,
553
(
2000
).
15.
M.
Baranger
,
M. A. M.
de Aguiar
,
F.
Keck
,
H. J.
Korsch
, and
B.
Schellhaas
,
J. Phys. A
34
,
7227
(
2001
).
16.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
19.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
20.
K.
Thompson
and
N.
Makri
,
Phys. Rev. E
59
,
R4729
(
1999
).
21.
J.
Shao
and
N.
Makri
,
J. Phys. Chem. A
103
,
7753
(
1999
).
22.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
103
,
7753
(
1999
).
23.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
9220
(
2001
).
24.
E.
Pollak
and
J.
Shao
,
J. Phys. Chem. A
107
,
7112
(
2003
).
25.
S.
Zhang
and
E.
Pollak
,
Phys. Rev. Lett.
91
,
190201
(
2003
).
26.
S.
Zhang
and
E.
Pollak
,
J. Chem. Phys.
119
,
11058
(
2003
).
27.
E.
Pollak
and
S.
Miret-Artes
,
J. Phys. A
37
,
9669
(
2004
).
28.
S.
Zhang
and
E.
Pollak
,
J. Chem. Phys.
121
,
3384
(
2004
).
29.
S.
Zhang
and
E.
Pollak
,
J. Chem. Theory Comput.
1
,
345
(
2005
).
30.
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
31.
E.
Martin-Fierro
and
J. M.
Gomez Llorente
,
Chem. Phys.
322
,
13
(
2006
).
32.
F.
Grossmann
and
M. F.
Herman
,
J. Phys. A
35
,
9489
(
2002
).
33.
M.
Baranger
,
M. A. M.
de Aguiar
,
F.
Keck
,
H. J.
Korsch
, and
B.
Schellhaas
,
J. Phys. A
34
,
9493
(
2002
).
34.
D. H.
Zhang
and
E.
Pollak
,
Phys. Rev. Lett.
93
,
140401
(
2004
).
35.
M.
Saltzer
and
E.
Pollak
,
J. Chem. Theory Comput.
1
,
439
(
2005
).
36.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
37.
U.
Weiss
and
M.
Sassetti
, in
Activated Barrier Crossing
, edited by
G.
Fleming
and
P.
Hänggi
(
World Scientific
,
Singapore
,
1993
), pp.
293
327
.
38.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
39.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
47
(
2000
).
40.
C.
Harabati
,
J. M.
Rost
, and
F.
Grossmann
,
J. Chem. Phys.
120
,
26
(
2004
).
41.
You do not currently have access to this content.