We investigate solid–liquid transitions in NaCl at high pressures using molecular dynamics simulations, including the melting curve and superheating/supercooling as well as solid–solid and liquid–liquid transitions. The first-order B1–B2 (NaCl–CsCl type) transition in solid is observed at high pressures besides continuous liquid structure transitions, which are largely analogous to the B1–B2 transition in solid. The equilibrium melting temperatures (Tm) up to megabar pressure are obtained from the solid–liquid coexistence technique and the superheating–supercooling hysteresis method. Lindemann’s vibrational and Born’s mechanical instabilities are found upon melting. The Lindemann frequency is calculated from the vibrational density of states. The Lindemann parameter (fractional root-mean-squared displacement) increases with pressure and approaches a constant asymptotically, similar to the Lennard-Jones system. However, the Lindemann melting relation holds for both B1 and B2 phases to high accuracy as for the Lennard-Jonesium. The B1 and B2 NaCl solids can be superheated by 0.18Tm and 0.24Tm, and the NaCl liquid, supercooled by 0.22Tm and 0.32Tm, respectively, at heating or cooling rates of 1 K/s and 1 K/ps. The amount of maximum superheating or supercooling and its weak pressure dependence observed for NaCl are in accord with experiments on alkali halides and with simulations on the Lennard-Jones system and Al.

1.
F. A.
Lindemann
,
Phys. Z.
11
,
609
(
1910
).
2.
M.
Born
,
J. Chem. Phys.
7
,
591
(
1939
).
3.
D.
Turnbull
,
J. Appl. Phys.
21
,
1022
(
1950
).
4.
K. F.
Kelton
,
Solid State Phys.
45
,
75
(
1991
).
5.
A. G.
Walton
, in
Nucleation
, edited by
A. C.
Zettlemoyer
(
Dekker
,
New York
,
1969
), Chap 5.
6.
K.
Lu
and
Y.
Li
,
Phys. Rev. Lett.
80
,
4474
(
1998
).
7.
Z. H.
Jin
,
P.
Gumbsch
,
K.
Lu
, and
E.
Ma
,
Phys. Rev. Lett.
87
,
055703
(
2001
).
8.
J. J.
Gilvarry
,
Phys. Rev.
102
,
308
(
1956
).
9.
M.
Forsblom
and
G.
Grimvall
,
Nat. Mater.
4
,
388
(
2005
).
10.
S. N.
Luo
,
A.
Strachan
, and
D. C.
Swift
,
J. Chem. Phys.
120
,
11640
(
2004
).
11.
J. L.
Tallon
,
Nature
342
,
658
(
1989
).
12.
H.
Iglev
,
M.
Schmeisser
,
K.
Simeonidis
,
A.
Thaller
, and
A.
Laubereau
,
Nature
439
,
183
(
2006
).
13.
H. J.
Fecht
and
W. L.
Johnson
,
Nature
334
,
50
(
1988
).
14.
J. -P.
Poirier
,
Introduction to the Physics of the Earth’s Interior
(
Cambridge University Press
,
New York
,
1991
).
15.
M.
Avrami
,
J. Chem. Phys.
8
,
212
(
1940
).
16.
J. E.
Lennard-Jones
and
A. F.
Devonshire
,
Proc. R. Soc. London, Ser. A
169
,
464
(
1939
).
17.
W.
Kauzmann
,
Chem. Rev.
43
,
219
(
1948
).
18.
R.
Boehler
,
M.
Ross
, and
D. B.
Boercker
,
Phys. Rev. Lett.
78
,
4589
(
1997
).
19.
D.
Walker
,
L. M. D.
Cranswick
,
P. K.
Verma
,
S. M.
Clark
, and
S.
Buhre
,
Am. Mineral.
87
,
805
(
2002
).
20.
C. W. F. T.
Pistorius
,
J. Phys. Chem. Solids
26
,
1543
(
1965
).
21.
D. A.
Boness
and
J. M.
Brown
,
Phys. Rev. Lett.
71
,
2931
(
1993
).
22.
S.
Urakawa
,
N.
Igawa
,
O.
Shimomura
, and
H.
Ohno
,
Am. Mineral.
84
,
341
(
1999
).
23.
M.
Ross
and
F. J.
Rogers
,
Phys. Rev. B
31
,
1463
(
1985
).
24.
J. L.
Tallon
,
Phys. Lett.
72A
,
150
(
1979
).
25.
S.
Biggin
and
J. E.
Enderby
,
J. Phys C: Solid State Phys.
15
,
L305
(
1982
).
26.
H.
Ohno
and
K.
Furukawa
,
J. Chem. Soc., Faraday Trans. 1
77
,
1981
(
1981
).
27.
J.
Anwar
,
D.
Frenkel
, and
M. G.
Noro
,
J. Chem. Phys.
118
,
728
(
2003
).
28.
A. B.
Belonoshko
and
L. S.
Dubrovinsky
,
Am. Mineral.
81
,
303
(
1996
).
29.
X. L.
Cheng
,
Z. J.
Liu
,
L. C.
Cai
, and
F. P.
Zhang
,
Chin. Phys. Lett.
20
,
2078
(
2003
).
30.
M. P.
Tosi
and
F. G.
Fumi
,
J. Phys. Chem. Solids
25
,
45
(
1964
).
31.
S. B.
Kormer
,
Sov. Phys. Usp.
21
,
689
(
1965
).
32.
F.
Birch
,
J. Geophys. Res.
91
,
4949
(
1986
).
33.
J.
Akella
,
S. N.
Vaidya
, and
G. C.
Kennedy
,
Phys. Rev.
185
,
1135
(
1969
).
34.
C.
Valeriani
,
E.
Sanz
, and
D.
Frenkel
,
J. Chem. Phys.
122
,
194501
(
2005
).
35.
E. R.
Buckle
and
A. R.
Ubbelohde
,
Proc. R. Soc. London, Ser. A
529
,
325
(
1960
).
36.
T.
Koishi
,
K.
Yasuoka
, and
T.
Ebisuzaki
,
J. Chem. Phys.
119
,
11298
(
2003
).
37.
T.
Zykova-Timan
,
D.
Ceresoli
,
U.
Tartaglino
, and
E.
Tosatti
,
J. Chem. Phys.
123
,
164701
(
2005
).
38.
D. M.
Eike
,
J. F.
Brennecke
, and
E. J.
Maginn
,
J. Chem. Phys.
122
,
014115
(
2005
).
39.
W. A.
Bassett
,
T.
Takahashi
,
H. -K.
Mao
, and
J. S.
Weaver
,
J. Appl. Phys.
39
,
319
(
1968
).
40.
S. N.
Luo
,
L. Q.
Zheng
,
A.
Strachan
, and
D. C.
Swift
,
J. Chem. Phys.
(
2006
) (submitted).
41.
S. N.
Luo
,
A.
Strachan
, and
D. C.
Swift
,
J. Chem. Phys.
122
,
194709
(
2005
).
42.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
43.
B.
Rethfeld
,
K.
Sokolowski-Tinten
,
D.
von der Linde
, and
S. I.
Anisimow
,
Phys. Rev. B
65
,
092103
(
2002
).
44.
S. N.
Luo
,
T. J.
Ahrens
,
T.
Çağın
,
A.
Strachan
,
W. A.
Goddard
 III
, and
D. C.
Swift
,
Phys. Rev. B
68
,
134206
(
2003
).
45.
S. N.
Luo
and
T. J.
Ahrens
,
Appl. Phys. Lett.
82
,
1836
(
2003
).
46.
S. N.
Luo
and
T. J.
Ahrens
,
Phys. Earth Planet. Int.
143–144
,
369
(
2004
).
47.
S. N.
Luo
and
D. C.
Swift
,
J. Chem. Phys.
121
,
7387
(
2004
).
48.
S. N.
Luo
,
A.
Strachan
, and
D. C.
Swift
,
Model. Simul. Mater. Sci. Eng.
13
,
321
(
2005
).
49.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
50.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
51.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
52.
K.
Refson
,
Moldy User's Manual
(
Department of Earth Sciences
,
Oxford, United Kingdom
,
2001
).
53.
Y.
Waseda
,
The Structure of Noncrystalline Materials: Liquids and Amorphous Solids
(
McGraw–Hill
,
New York
,
1980
).
54.
M.
Rog
,
K.
Murzyn
,
K.
Hinsen
, and
G. R.
Kneller
,
J. Comput. Chem.
24
,
657
(
2003
).
55.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
Cambridge
,
1995
).
56.
J. N.
Shapiro
,
Phys. Rev. B
1
,
3982
(
1970
).
57.
A. A.
Maradudin
,
D. W.
Montroll
,
G. H.
Weiss
, and
I. P.
Ipatova
,
Theory of Lattice Dynamics in the Harmonic Approximation
(
Academic
,
New York
,
1971
).
58.
G. H.
Wolf
and
R.
Jeanloz
,
J. Geophys. Res.
89
,
7821
(
1984
).
59.
J. R.
Ray
,
M. C.
Moody
, and
A.
Rahman
,
Phys. Rev. B
32
,
733
(
1985
).
60.
S.
Nosé
and
F.
Yonezawa
,
J. Chem. Phys.
84
,
1803
(
1986
).
61.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
43
(
1995
).
62.
P. M.
Agrawal
,
B. M.
Rice
, and
D. L.
Thompson
,
J. Chem. Phys.
118
,
9680
(
2003
).
63.
S.
Alavi
and
D. L.
Thompson
,
J. Chem. Phys.
122
,
154704
(
2005
).
64.
J. R.
Morris
,
C. Z.
Wang
,
K. M.
Ho
, and
C. T.
Chan
,
Phys. Rev. B
49
,
3109
(
1994
).
65.
L. Q.
Zheng
,
S. N.
Luo
, and
D. L.
Thompson
,
J. Chem. Phys.
124
,
154504
(
2006
).
66.
Y. W.
Tang
,
J.
Wang
, and
X. C.
Zeng
,
J. Chem. Phys.
124
,
236103
(
2006
).
67.
C.
Kittle
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1971
).
68.
D.
Alfè
,
L.
Vočadlo
,
G. D.
Price
, and
M. J.
Gillan
,
J. Phys. Condens. Matter
16
,
S973
(
2004
).
69.
S. N.
Luo
and
D. C.
Swift
,
Physica B (Amsterdam)
(
2006
) (in press).
70.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys
(
Van Nostrand Reinhold
,
Wokingham, UK
,
1981
).
71.
J. G.
Dash
,
Rev. Mod. Phys.
71
,
1737
(
1999
).
72.
P. M.
Agrawal
,
B. M.
Rice
, and
D. L.
Thompson
,
J. Chem. Phys.
119
,
9617
(
2003
).
73.
X. M.
Bai
and
M.
Li
,
J. Chem. Phys.
122
,
224510
(
2005
).
74.
I.
Stalder
and
J. H.
Bilgram
,
J. Chem. Phys.
118
,
7981
(
2003
).
75.
L.
Gránásy
,
T.
Pusztai
, and
P. F.
James
,
J. Chem. Phys.
117
,
6157
(
2002
).
76.
N.
Kawai
and
Y.
Inokuchi
,
Jpn. J. Appl. Phys.
9
,
31
(
1970
).
77.
S.
Falconi
,
L. F.
Lundegaard
,
C.
Hejny
, and
M. I.
McMahon
,
Phys. Rev. Lett.
94
,
125507
(
2005
).
You do not currently have access to this content.