This work presents a systematic multiscale methodology to provide a more faithful representation of real dynamics in coarse-grained molecular simulation models. The theoretical formalism is based on the recently developed multiscale coarse-graining (MS-CG) method [S. Izvekov and G. A. Voth, J. Phys. Chem. B.109, 2469 (2005); J. Chem. Phys.123, 134105 (2005)] and relies on the generalized Langevin equation approach and its simpler Langevin equation limit. The friction coefficients are determined in multiscale fashion from the underlying all-atom molecular dynamics simulations using force-velocity and velocity-velocity correlation functions for the coarse-grained sites. The diffusion properties in the resulting CG Brownian dynamics simulations are shown to be quite accurate. The time dependence of the velocity autocorrelation function is also well-reproduced relative to the all-atom model if sufficient resolution of the CG sites is implemented.

1.
See, for example, the entire recent issue of J. Chem. Theory Comput.
2
(
3
), (
2006
), and references cited therein.
2.
R.
Zwanzig
, in
Lectures in Theoretical Physics
, edited by
W.
Brittin
and
L.
Dunham
(
Wiley-Interscience
, New York,
1961
), Vol.
3
, p.
135
.
3.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
4.
H.
Mori
,
Prog. Theor. Phys.
34
,
399
(
1965
).
5.
B. J.
Berne
and
G. D.
Harp
,
Adv. Chem. Phys.
17
,
63
(
1970
).
6.
R.
Zwanzig
,
J. Stat. Phys.
9
,
215
(
1973
).
7.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
8.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
,
134105
(
2005
).
9.
S.
Izvekov
,
M.
Parrinello
,
C. J.
Burnham
, and
G. A.
Voth
,
J. Chem. Phys.
120
,
10896
(
2004
).
10.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
, San Diego,
1996
).
You do not currently have access to this content.