It is shown that in nuclear magnetic resonance, multiple-quantum (MQ) coherences can be detected “instantly” by exploiting the principle of quantum-mechanical projective measurement. Therefore, the mixing period, which involves collective multispin dynamics and converts MQ coherences into observable single-quantum coherence (magnetization), is not necessary. The experimental examples are given for two finite clusters: benzene in liquid crystal and liquid crystal 4-n-pentyl-4-cyanobiphenyl, and for solid adamantane with an infinite network of dipolar couplings.

1.
R. R.
Ernst
,
G.
Bodenhausen
, and
A.
Wokaun
,
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
(
Clarendon
,
Oxford
,
1987
).
2.
W. S.
Warren
,
S.
Sinton
,
D. P.
Weitekamp
, and
A.
Pines
,
Phys. Rev. Lett.
43
,
1791
(
1979
).
3.
W. S.
Warren
and
A.
Pines
,
J. Chem. Phys.
74
,
2808
(
1981
).
4.
Y.
Yen
and
A.
Pines
,
J. Chem. Phys.
78
,
3579
(
1983
).
5.
J.
Baum
,
M.
Munowitz
,
A. N.
Garroway
, and
A.
Pines
,
J. Chem. Phys.
83
,
2015
(
1985
).
6.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison-Wesley
,
New York
,
1994
).
7.
J.-S.
Lee
and
A. K.
Khitrin
,
Appl. Phys. Lett.
89
,
074105
(
2006
).
8.
C. P.
Slichter
,
Principles of Magnetic Resonance
(
Springer-Verlag
,
Berlin
,
1996
).
You do not currently have access to this content.