We compare a new classical water model, which features Gaussian charges and polarizability (GCPM) with ab initio Car-Parrinello molecular dynamics (CPMD) simulations. We compare the total dipole moment, the total dipole moment distribution, and degree of hydrogen bonding at ambient to supercritical conditions. We also compared the total dipole moment calculated from both the electron density (partitioning the electron density among molecules based on a zero electron flux condition), and from the center of localized Wannier function centers (WFCs). Compared to CPMD, we found that GCPM overpredicts the dipole moment derived by partitioning the electron density and underpredicts that obtained from the WFCs, but exhibits similar trends and distribution of values. We also found that GCPM predicted similar degrees of hydrogen bonding compared to CPMD and has a similar structure.

2.
P.
Paricaud
,
M.
Predota
,
A. A.
Chialvo
, and
P. T.
Cummings
,
J. Chem. Phys.
122
,
4511
(
2005
).
3.
S. A.
Clough
,
Y.
Beers
, and
G. P.
Klein
,
J. Chem. Phys.
59
,
2254
(
1973
).
4.
W. S.
Benedict
,
N.
Gailar
, and
E. K.
Plyler
,
J. Chem. Phys.
24
,
1139
(
1956
).
5.
F. H.
Stillinger
,
The Liquid State of Matter: Fluids Simple and Complex
(
North-Holland
,
Amsterdam
,
1982
).
6.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
7.
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
99
,
9080
(
1993
).
8.
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
9.
A. V.
Gubskaya
and
P. G.
Kusalik
,
J. Chem. Phys.
117
,
5290
(
2002
).
10.
E.
Schwegler
,
G.
Galli
,
F.
Gyfi
, and
R. Q.
Hood
,
Phys. Rev. Lett.
87
,
265501
(
2001
).
11.
M.
Boero
,
K.
Terakura
,
T.
Ikeshoji
,
C. C.
Liew
, and
M.
Parrinello
,
J. Chem. Phys.
115
,
2219
(
2001
).
12.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
13.
R. F. W.
Bader
,
Atoms in Molecules
(
Oxford University Press
,
New York
,
1994
), Vol.
22
.
14.
L.
Delle Site
,
A.
Alavi
, and
R. M.
Lynden-Bell
,
Mol. Phys.
96
,
1683
(
1999
).
15.
I.
Souza
,
R. M.
Martin
,
N.
Marzari
,
X.
Zhao
, and
D.
Vanderbilt
,
Phys. Rev. B
62
,
15505
(
2000
).
16.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
17.
Y. S.
Badyal
,
M.-L.
Saboungi
,
D. L.
Price
,
S. D.
Shastri
, and
D. R.
Haeffner
,
J. Chem. Phys.
112
,
9206
(
2000
).
18.
A. L.
Yaoquan Tu
,
Chem. Phys. Lett.
329
,
283
(
2000
).
19.
P. G. K. A. V.
Gubskaya
,
Mol. Phys.
99
,
1107
(
2001
).
20.
J. K.
Gregory
,
D. C.
Clary
,
K.
Liu
,
M. G.
Brown
, and
R. J.
Saykally
,
Science
275
,
814
(
1997
).
21.
M.
Mezei
and
D. L.
Beveridge
,
J. Chem. Phys.
74
,
622
(
1981
).
22.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
23.
Copyright IBM Corp.
1990–2004, CPMD, Version 3.9.1,
2004
.
24.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
25.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
26.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
27.
G. S.
Del Buono
,
P. J.
Rossky
, and
J.
Schnitker
,
J. Chem. Phys.
95
,
3728
(
1991
).
28.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
106
,
2400
(
1997
).
29.
H. A.
Stern
and
B. J.
Berne
,
J. Chem. Phys.
115
,
7622
(
2001
).
30.
L. H.
De La Pena
and
P. G.
Kusalik
,
Mol. Phys.
102
,
927
(
2004
).
31.
T. F.
Miller
 III
and
D. E.
Manolopoulos
,
J. Chem. Phys.
123
,
154504
(
2005
).
32.
I. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
 et al.,
J. Phys. Chem. B
108
,
12990
(
2004
).
33.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
,
044505
(
2005
).
34.
M.
Allesch
,
J. Chem. Phys.
120
,
5192
(
2004
).
You do not currently have access to this content.