Dielectric permittivity and loss are measured under steady shear flow as functions of temperature, shear rate, electric field frequency, and electric field strength in the nematic (N) and the isotropic (I) phases of 4-n-pentyl-4-cyanobiphenyl. In the N phase, the dielectric permittivity in the quiescent state is largely modified if the steady shear flow is applied. These behaviors are discussed based on the Leslie-Ericksen theory [Q. J. Mech. Appl. Math.19, 357 (1966); Arch. Ration. Mech. Anal.4, 231 (1960)], showing that the dielectric properties under the shear flow are consistently interpreted in terms of the flow alignment of the director, a unit vector specifying the orientation of the liquid crystals. It is also suggested that the behaviors of dielectric permittivities are similar to those of the viscosities.

1.
P. G.
de Gennes
,
The Physics of Liquid Crystals
, 2nd ed. (
Oxford University Press
,
Oxford
,
1993
).
2.
S.
Chandrasekhar
,
Liquid Crystals
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
).
3.
F. M.
Leslie
,
Q. J. Mech. Appl. Math.
19
,
357
(
1966
).
4.
J. L.
Ericksen
,
Arch. Ration. Mech. Anal.
4
,
231
(
1960
).
5.
O.
Parodi
,
J. Phys. (Paris)
31
,
581
(
1970
).
6.
Ch.
Gahwiller
,
Phys. Rev. Lett.
28
,
1554
(
1972
).
7.
T.
Carlsson
and
K.
Skarp
,
Mol. Cryst. Liq. Cryst.
78
,
157
(
1981
).
8.
T.
Carlsson
,
Mol. Cryst. Liq. Cryst.
104
,
307
(
1984
).
9.
K.
Skarp
,
S. T.
Lagerwall
, and
B.
Stebler
,
Mol. Cryst. Liq. Cryst.
60
,
215
(
1980
).
10.
H.
Kneppe
,
F.
Schneider
, and
N. K.
Sharma
,
Ber. Bunsenges. Phys. Chem.
85
,
784
(
1981
).
11.
H.
Kneppe
,
F.
Schneider
, and
N. K.
Sharma
,
J. Chem. Phys.
77
,
3203
(
1982
).
12.
C. R.
Safinya
,
E. B.
Sirota
, and
R. J.
Plano
,
Phys. Rev. Lett.
66
,
1986
(
1991
).
13.
K.
Skarp
,
T.
Carlsson
,
S. T.
Lagerwall
, and
B.
Stebler
,
Mol. Cryst. Liq. Cryst.
66
,
199
(
1981
).
14.
P.
Pieranski
and
E.
Guyon
,
Phys. Rev. Lett.
32
,
924
(
1974
).
15.
D.-F.
Gu
,
A. M.
Jamieson
, and
S.-Q.
Wang
,
J. Rheol.
37
,
985
(
1993
).
16.
K.
Negita
,
J. Chem. Phys.
105
,
7837
(
1996
).
17.
B. R.
Ratna
and
R.
Shashidhar
,
Mol. Cryst. Liq. Cryst.
42
,
113
(
1977
).
18.
J.
Jadzyn
and
P.
Kedziora
,
Mol. Cryst. Liq. Cryst.
145
,
17
(
1987
).
19.
J. H.
van Vleck
,
The Theory of Electric and Magnetic Susceptibilities
(
Oxford University Press
,
New York
,
1931
).
20.

ε at 300K was obtained by interpolating the data in Ref. 17.

21.
A.
Sawada
,
K.
Tarumi
, and
S.
Naemura
,
Jpn. J. Appl. Phys., Part 1
38
,
1418
(
1999
).
22.
A.
Okagawa
,
P. G.
Cox
, and
S. G.
Mason
,
J. Colloid Interface Sci.
47
,
536
(
1974
);
A.
Okagawa
and
S. G.
Mason
,
J. Colloid Interface Sci.
47
,
568
(
1974
).
23.
H.
Block
,
K. M. W.
Goodman
,
E. M.
Gregson
, and
S. M.
Walker
,
Nature (London)
275
,
632
(
1978
);
H.
Block
,
E.
Kluk
,
J.
McConnell
, and
B. K. P.
Scaife
,
J. Colloid Interface Sci.
101
,
320
(
1984
).
24.
Y.
Misono
and
K.
Negita
,
Phys. Rev. E
70
,
061412
(
2004
).
25.
P. G.
Cummins
,
D. A.
Dunmur
, and
D. A.
Laidler
,
Mol. Cryst. Liq. Cryst.
30
,
109
(
1975
).
26.
B. R.
Ratna
and
R.
Shashidhar
,
Mol. Cryst. Liq. Cryst.
42
,
185
(
1977
).
27.
J.
Wahl
,
Z. Naturforsch. A
34A
,
818
(
1979
).
You do not currently have access to this content.