Knowledge of the ratios between different polarizability βijk tensor elements of a chemical group in a molecule is crucial for quantitative interpretation and polarization analysis of its sum frequency generation vibrational spectroscopy (SFG-VS) spectrum at interface. The bond additivity model (BAM) or the hyperpolarizability derivative model along with experimentally obtained Raman depolarization ratios has been widely used to obtain such tensor ratios for the CH3, CH2, and CH groups. Successfully, such treatment can quantitatively reproduce the intensity polarization dependence in SFG-VS spectra for the symmetric (SS) and asymmetric (AS) stretching modes of CH3 and CH2 groups, respectively. However, the relative intensities between the SS and AS modes usually do not agree with each other within this model even for some of the simplest molecular systems, such as the air/methanol interface. This fact certainly has cast uncertainties on the effectiveness and conclusions based on the BAM. One of such examples is that the AS mode of CH3 group has never been observed in SFG-VS spectra from the air/methanol interface, while this AS mode is usually very strong for SFG-VS spectra from the air/ethanol interface, other short chain alcohol, as well as long chain surfactants. In order to answer these questions, an empirical approach from known Raman and IR spectra is used to make corrections to the BAM. With the corrected ratios between the βijk tensor elements of the SS and AS modes, all features in the SFG-VS spectra of the air/methanol and air/ethanol interfaces can be quantitatively interpreted. This empirical approach not only provides new understandings of the effectiveness and limitations of the bond additivity model but also provides a practical way for its application in SFG-VS studies of molecular interfaces.

1.
X. D.
Zhu
,
H.
Suhr
, and
Y. R.
Shen
,
Phys. Rev. B
35
,
3047
(
1987
).
2.
Y. R.
Shen
,
Nature (London)
337
,
519
(
1989
).
3.
C. D.
Bain
,
J. Chem. Soc., Faraday Trans.
91
,
1281
(
1995
).
4.
K. B.
Eisenthal
,
Chem. Rev. (Washington, D.C.)
96
,
1343
(
1996
).
5.
P. B.
Miranda
and
Y. R.
Shen
,
J. Phys. Chem. B
103
,
3292
(
1999
).
6.
M. J.
Shultz
,
C.
Schnitzer
,
D.
Simonelli
, and
S.
Baldelli
,
Int. Rev. Phys. Chem.
19
,
123
(
2000
).
7.
M.
Buck
and
M.
Himmelhaus
,
J. Vac. Sci. Technol. A
19
,
2717
(
2001
).
8.
Z.
Chen
,
Y. R.
Shen
, and
G. A.
Somorjai
,
Annu. Rev. Phys. Chem.
53
,
437
(
2002
).
9.
G. L.
Richmond
,
Chem. Rev. (Washington, D.C.)
102
,
2693
(
2002
).
10.
H. F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B. H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
11.
P.
Guyot-Sionnest
,
J. H.
Hunt
, and
Y. R.
Shen
,
Phys. Rev. Lett.
59
,
1597
(
1987
).
12.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Phys. Rev. Lett.
66
,
1066
(
1991
).
13.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
14.
D. K.
Hore
,
D. K.
Beaman
,
D. H.
Park
, and
G. L.
Richmond
,
J. Phys. Chem. B
109
,
16846
(
2005
).
15.
Y. R.
Shen
,
The Principles of Nonlinear Optics
(
Wiley
,
New York
,
1984
).
16.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
,
J. Chem. Phys.
96
,
997
(
1992
).
17.
C.
Hirose
,
H.
Yamamoto
,
N.
Akamatsu
, and
K.
Domen
,
J. Phys. Chem.
97
,
10064
(
1993
).
18.
X.
Wei
,
S. C.
Hong
,
X. W.
Zhuang
,
T.
Goto
, and
Y. R.
Shen
,
Phys. Rev. E
62
,
5160
(
2000
).
19.
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
70
,
2313
(
1993
).
20.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
,
371
(
2000
).
21.
W.
Gan
,
D.
Wu
,
Z.
Zhang
,
Y.
Guo
, and
H. F.
Wang
,
Chin. J. Chem. Phys.
19
,
20
(
2006
).
22.
W.
Gan
,
D.
Wu
,
Z.
Zhang
,
R. R.
Feng
, and
H. F.
Wang
,
J. Chem. Phys.
124
,
114705
(
2006
).
23.
Y. L.
Yeh
,
C.
Zhang
,
H.
Held
,
A. M.
Mebel
,
X.
Wei
,
S. H.
Lin
, and
Y. R.
Shen
,
J. Chem. Phys.
114
,
1837
(
2001
).
24.
M.
Oh-e
,
H.
Yokoyama
, and
S.
Baldelli
,
Appl. Phys. Lett.
84
,
4965
(
2004
).
25.
R.
Lu
,
W.
Gan
,
B. H.
Wu
,
H.
Chen
, and
H. F.
Wang
,
J. Phys. Chem. B
108
,
7297
(
2004
).
26.
R.
Lu
,
W.
Gan
,
B. H.
Wu
,
Z.
Zhang
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
14118
(
2005
).
27.
K. K.
Irikura
,
R. D.
Johnson
 III
, and
R. N.
Kacker
,
J. Phys. Chem. A
109
,
8430
(
2005
).
28.
P.
Fischer
and
A. D.
Buckingham
,
J. Opt. Soc. Am. B
15
,
2951
(
1998
).
29.
T. H.
Ong
,
P. B.
Davies
, and
C. D.
Bain
,
Langmuir
9
,
1836
(
1993
).
30.
G. R.
Bell
,
Z. X.
Li
,
C. D.
Bain
,
P.
Fischer
, and
D. C.
Duffy
,
J. Phys. Chem. B
102
,
9461
(
1998
).
31.
J. L.
McHale
,
Molecular Spectroscopy
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1999
), p.
280
.
32.
D.
Zhang
,
J.
Gutow
, and
K. B.
Eisenthal
,
J. Phys. Chem.
98
,
13729
(
1994
).
33.
E.
Tyrode
,
C. M.
Johnson
,
S.
Baldelli
,
C.
Leygraf
, and
M. W.
Rutland
,
J. Phys. Chem. B
109
,
329
(
2005
).
34.
Y.
Rao
,
M.
Comstock
, and
K. B.
Eisenthal
,
J. Phys. Chem. B
110
,
1727
(
2006
).
35.
W.
Gan
,
B. H.
Wu
,
Z.
Zhang
,
Y.
Guo
, and
H. F.
Wang
(to be submitted).
36.
K. M.
Gough
,
J. Chem. Phys.
91
,
2424
(
1989
).
37.
L.
Dixit
,
P.
Kumar
,
R. B.
Gupta
, and
P. L.
Gupta
,
Appl. Spectrosc. Rev.
18
,
373
(
1982
).
38.
M. V.
Wolkenshtein
,
M. A.
Eliashevich
, and
B. I.
Stepnov
,
Kolebaniyia Molecule (Vibrations of Molecules)
(
GITIL
,
Moscow
,
1949
), Vol.
1
.
39.
L. A.
Gribov
,
Intensity Theory for Infrared Spectra of Polyatonic Molecules
(
Consultants Bureau
,
New York
,
1964
).
40.
S.
Abbate
,
M.
Gussoni
, and
G.
Zeribi
,
Indian J. Pure Appl. Phys.
16
,
199
(
1978
).
41.
T.
Yoshino
and
H. J.
Bernstein
,
J. Mol. Spectrosc.
2
,
213
(
1958
).
42.
D.
Steele
,
Quarterly Reviews
18
,
21
(
1964
).
43.
I. C.
Hisatsune
,
J. Chem. Phys.
23
,
487
(
1955
).
44.
D. F.
Eggers
,
I. C.
Hisatsune
, and
L. V.
Alten
,
J. Phys. Chem.
59
,
1124
(
1955
).
45.
D. F.
Hornig
and
D. C.
Mckean
,
J. Phys. Chem.
59
,
1133
(
1955
).
46.
D. C.
Harris
and
M. D.
Bertolucci
,
Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy
, (
Dover
,
New York
,
1990
).
47.
K.
Wolfrum
,
H.
Graener
, and
A.
Laubereau
,
Chem. Phys. Lett.
213
,
41
(
1993
).
48.
J. Y.
Huang
and
M. H.
Wu
,
Phys. Rev. E
50
,
3737
(
1994
).
49.
C. D.
Stanners
,
Q.
Du
,
R. P.
Chin
,
P.
Cremer
,
G. A.
Somorjai
, and
Y. R.
Shen
,
Chem. Phys. Lett.
232
,
407
(
1995
).
50.
G.
Ma
and
H. C.
Allen
,
J. Phys. Chem. B
107
,
6343
(
2003
).
51.
R.
Lu
,
W.
Gan
, and
H. F.
Wang
,
Chin. Sci. Bull.
48
,
2183
(
2003
);
R.
Lu
,
W.
Gan
, and
H. F.
Wang
,
Chin. Sci. Bull.
49
,
899
(
2004
).
52.
H.
Chen
,
W.
Gan
,
R.
Lu
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
8064
(
2005
).
53.
J.
Sung
,
K.
Park
, and
D.
Kim
,
J. Phys. Chem. B
109
,
18507
(
2005
).
54.
H.
Wu
,
W. K.
Zhang
,
W.
Gan
,
Z. F.
Cui
, and
H. F.
Wang
,
Chin. J. Chem. Phys.
19
,
187
(
2006
).
55.
W.
Gan
,
B. H.
Wu
,
H.
Chen
,
Y.
Guo
, and
H. F.
Wang
,
Chem. Phys. Lett.
406
,
467
(
2005
).
56.
D. A.
Long
,
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
(
Wiley
,
Chichester
,
2002
).
57.
L. A.
Nafie
, and
W. L.
Peticolas
,
J. Chem. Phys.
57
,
3145
(
1972
).
58.
D. A.
Long
,
Raman Spectroscopy
(
McGraw-Hill
,
New York
,
1977
).
59.
M. J.
Colles
and
J. E.
Griffiths
,
J. Chem. Phys.
56
,
3384
(
1972
).
60.
B. H.
Wu
, Ph.D. thesis, Institute of Chemistry, Chinese Academy of Sciences,
2005
.
61.
S.-L.
Liu
(Private communication).
62.
J. E.
Bertie
and
S. L.
Zhang
,
J. Mol. Struct.
413–414
,
333
(
1997
).
63.
J.-P.
Perchard
and
M.-L.
Josien
,
J. Chim. Phys. Phys.-Chim. Biol.
65
,
1856
(
1968
).
64.
H.
Chen
,
W.
Gan
,
B. H.
Wu
,
D.
Wu
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
8053
(
2005
).
65.
H.
Chen
,
W.
Gan
,
B. H.
Wu
,
D.
Wu
,
Z.
Zhang
, and
H. F.
Wang
,
Chem. Phys. Lett.
408
,
284
(
2005
).
66.
J.
Kim
,
K. C.
Chou
, and
G. A.
Somorjai
,
J. Phys. Chem. B
107
,
1592
(
2003
).
67.
A.
Opdahl
,
R. A.
Phillips
, and
G. A.
Somorjai
,
J. Phys. Chem. B
106
,
5212
(
2002
).
You do not currently have access to this content.