Forty three vibronic levels of C2H2+, X̃Πu2, with υ4=06, υ5=03, and K=04, lying at energies of 03520cm1 above the zero-point level, have been recorded at rotational resolution. These levels were observed by double resonance, using 1+1 two-color pulsed-field ionization zero-kinetic-energy photoelectron spectroscopy. The intermediate states were single rovibrational levels chosen from the ÃAu1, 4ν3(K=12), 5ν3(K=1), ν2+4ν3(K=0), and 47206cm1(K=1) levels of C2H2. Seven of the trans-bending levels of C2H2+ (υ4=03, K=02) had been reported previously by Pratt et al. [J. Chem. Phys.99, 6233 (1993)]; our results for these levels agree well with theirs. A full analysis has been carried out, including the Renner-Teller effect and the vibrational anharmonicity for both the trans- and cis-bending vibrations. The rotational structure of the lowest 16 vibronic levels (consisting of the complete set of levels with υ4+υ52, except for the unobserved upper Πu2 component of the 2ν4 overtone) could be fitted by least squares using 16 parameters to give an rms deviation of 0.21cm1. The vibronic coupling parameter ε5 (about whose magnitude there has been controversy) was determined to be 0.02737. For the higher vibronic levels, an additional parameter, r45, was needed to allow for the Darling-Dennison resonance between the two bending manifolds. Almost all the observed levels of the υ4+υ5=3 and 4 polyads (about half of the predicted number) could then be assigned. In a final fit to 39 vibronic levels with υ4+υ55, an rms deviation of 0.34cm1 was obtained using 20 parameters. An interesting finding is that Hund’s spin-coupling cases (a) and (b) both occur in the Σu components of the ν4+2ν5 combination level. The ionization potential of C2H2 (from the lowest rotational level of the ground state to the lowest rotational level of the cation) is found to be 91953.77±0.09cm1(3σ).

1.
T. M.
Orlando
,
B.
Yang
, and
S. L.
Anderson
,
J. Chem. Phys.
92
,
7356
(
1990
).
2.
B.
Yang
,
Y.
Chiu
, and
S. L.
Anderson
,
J. Chem. Phys.
94
,
6459
(
1991
).
3.
Y.
Chiu
,
H.
Fu
,
J.
Hung
, and
S. L.
Anderson
,
J. Chem. Phys.
101
,
5410
(
1994
);
Y.
Chiu
,
H.
Fu
,
J.
Hung
, and
S. L.
Anderson
,
J. Chem. Phys.
102
,
1199
(
1995
).
4.
P. B.
Armentrout
and
T.
Baer
,
J. Phys. Chem.
100
,
12866
(
1996
), and references therein.
5.
P.
Löffler
,
E.
Wrede
,
L.
Schnieder
,
J. B.
Halpern
,
W. M.
Jackson
, and
K. H.
Welge
,
J. Chem. Phys.
109
,
5231
(
1998
).
6.
M.-F.
Jagod
,
M.
Roesslein
,
C. M.
Gabrys
,
B. D.
Rehfuss
,
F.
Scappini
,
M. W.
Crofton
, and
T.
Oka
,
J. Chem. Phys.
97
,
7111
(
1992
).
7.
C.
Baker
and
D. W.
Turner
,
Chem. Commun. (London)
1967
,
797
.
8.
J. E.
Reutt
,
L. S.
Wang
,
J. E.
Pollard
,
D. J.
Trevor
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Chem. Phys.
84
,
3022
(
1986
).
9.
H.
Hattori
,
Y.
Hikosaka
,
T.
Hikida
, and
K.
Mitsuke
,
J. Chem. Phys.
106
,
4902
(
1997
).
10.
S. T.
Pratt
,
P. M.
Dehmer
, and
J. L.
Dehmer
,
J. Chem. Phys.
99
,
6233
(
1993
).
11.
R.
Renner
,
Z. Phys.
92
,
172
(
1934
).
12.
J. A.
Pople
,
Mol. Phys.
3
,
16
(
1960
).
13.
J. T.
Hougen
,
J. Chem. Phys.
36
,
519
(
1962
).
14.
T.
Barrow
,
R. N.
Dixon
, and
G.
Duxbury
,
Mol. Phys.
27
,
1217
(
1974
).
15.
Ch.
Jungen
and
A. J.
Merer
,
Mol. Phys.
40
,
1
(
1980
).
16.
J. M.
Brown
,
J. Mol. Spectrosc.
68
,
412
(
1977
).
17.
R. N.
Dixon
,
Philos. Trans. R. Soc. London, Ser. A
252
,
165
(
1960
).
18.
L.
Gausset
,
G.
Herzberg
,
A.
Lagerqvist
, and
B.
Rosen
,
Astrophys. J.
142
,
45
(
1965
).
19.
J. W. C.
Johns
,
Can. J. Phys.
39
,
1738
(
1961
).
20.
H. W.
Kroto
,
Can. J. Phys.
45
,
1439
(
1967
).
21.
K.
Dressler
and
D. A.
Ramsay
,
Philos. Trans. R. Soc. London, Ser. A
251
,
69
(
1959
).
22.
A. N.
Petelin
and
A. A.
Kiselev
,
Int. J. Quantum Chem.
6
,
701
(
1972
).
23.
M.
Perić
and
S. D.
Peyerimhoff
,
J. Chem. Phys.
102
,
3685
(
1995
).
24.
M.
Perić
,
H.
Thümmel
,
C. M.
Marian
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
102
,
7142
(
1995
).
25.
M.
Perić
,
B.
Ostojić
, and
B.
Engels
,
J. Chem. Phys.
109
,
3086
(
1998
).
26.
M.
Perić
,
B.
Ostojić
, and
J.
Radić-Perić
,
Phys. Rep.
290
,
283
(
1997
).
27.
J.
Tang
and
S.
Saito
,
J. Chem. Phys.
105
,
8020
(
1996
).
28.
S.-G.
He
and
D. J.
Clouthier
,
J. Chem. Phys.
120
,
8544
(
2004
) and references therein.
29.
S.-G.
He
and
D. J.
Clouthier
,
J. Chem. Phys.
123
,
014317
(
2005
).
30.
D. A.
Hostutler
,
S.-G.
He
, and
D. J.
Clouthier
,
J. Chem. Phys.
121
,
5801
(
2004
).
31.
M.
Li
and
J. A.
Coxon
,
J. Mol. Spectrosc.
196
,
14
(
1999
).
32.
R.
Colin
,
M.
Herman
, and
I.
Kopp
,
Mol. Phys.
37
,
1397
(
1979
).
33.
M.
Herman
and
R.
Colin
,
Phys. Scr.
25
,
275
(
1982
).
34.
V.
Blanchet
,
S.
Boyé
,
S.
Zamith
,
A.
Campos
,
B.
Girard
,
J.
Liévin
, and
D.
Gauyacq
,
J. Chem. Phys.
119
,
3751
(
2003
).
35.
M.
Takahashi
,
M.
Fujii
, and
M.
Ito
,
J. Chem. Phys.
96
,
6486
(
1992
).
36.
K.
Müller-Dethlefs
,
M.
Sander
, and
E. W.
Schlag
,
Chem. Phys. Lett.
112
,
291
(
1984
).
37.
K.
Müller-Dethlefs
and
E. W.
Schlag
,
Annu. Rev. Phys. Chem.
42
,
109
(
1991
).
38.
J. C.
Van Craen
,
M.
Herman
,
R.
Colin
, and
J. K. G.
Watson
,
J. Mol. Spectrosc.
111
,
185
(
1985
).
39.
A. J.
Merer
,
N.
Yamakita
,
S.
Tsuchiya
,
J. F.
Stanton
,
Z.
Duan
, and
R. W.
Field
,
Mol. Phys.
101
,
663
(
2003
).
40.
R.
Lindner
,
H.-J.
Dietrich
, and
K.
Müller-Dethlefs
,
Chem. Phys. Lett.
228
,
417
(
1994
).
41.
A. D.
Buckingham
,
B. J.
Orr
, and
J. M.
Sichel
,
Philos. Trans. R. Soc. London, Ser. A
268
,
147
(
1970
).
42.
R. N.
Dixon
,
G.
Duxbury
,
M.
Horani
, and
J.
Rostas
,
Mol. Phys.
22
,
977
(
1971
).
43.
R. N.
Dixon
,
G.
Duxbury
,
J. W.
Rababais
, and
L.
Åsbrink
,
Mol. Phys.
31
,
423
(
1976
).
44.
S. N.
Dixit
and
V.
McKoy
,
Chem. Phys. Lett.
128
,
49
(
1986
).
45.
J.
Xie
and
R. N.
Zare
,
J. Chem. Phys.
93
,
3053
(
1990
).
46.
R.
Signorell
and
F.
Merkt
,
Mol. Phys.
92
,
793
(
1997
).
47.
C. K.
Ingold
and
G. W.
King
,
J. Chem. Soc.
1953
,
2702
.
48.
K. K.
Innes
,
J. Chem. Phys.
22
,
863
(
1954
).
49.
J. K. G.
Watson
,
M.
Herman
,
J. C.
Van Craen
, and
R.
Colin
,
J. Mol. Spectrosc.
95
,
101
(
1982
).
50.
V. H.
Dibeler
,
J. A.
Walker
, and
K. E.
McCulloh
,
J. Chem. Phys.
99
,
2264
(
1973
).
51.
P. M.
Dehmer
and
J. L.
Dehmer
,
J. Electron. Spectrosc. Relat. Phenom.
28
,
145
(
1982
).
52.
Y.
Ono
,
E. A.
Osuch
, and
C. Y.
Ng
,
J. Chem. Phys.
76
,
3905
(
1982
).
53.
W. A.
Chupka
,
J. Chem. Phys.
96
,
4520
(
1993
).
54.
T. F.
Gallagher
,
Rydberg Molecules
(
Cambridge University Press
,
Cambridge
,
1994
).
56.
K.
Müller-Dethlefs
,
E. W.
Schlag
,
E. R.
Grant
,
K.
Wang
, and
B. V.
McKoy
,
Adv. Chem. Phys.
90
,
1
(
1995
), and references therein.
57.
Ch.
Jungen
and
A. J.
Merer
, in
Molecular Spectroscopy
,
Modern Research
Vol.
2
edited by
K. N.
Rao
and
C. W.
Mathews
(
Academic
,
New York
,
1976
), p.
127
.
58.
G.
Duxbury
,
B. D.
McDonald
, and
A.
Alijah
,
Mol. Phys.
89
,
767
(
1996
).
59.
J. M.
Brown
and
F.
Jørgensen
,
Annu. Rev. Phys. Chem.
52
,
117
(
1983
).
60.
J. M.
Brown
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P. R.
Bunker
(
Wiley
,
New York
,
2000
), Chap. 16.
61.
D.
Gauyacq
and
Ch.
Jungen
,
Mol. Phys.
41
,
383
(
1980
).
62.
J.
Plíva
,
J. Mol. Spectrosc.
44
,
165
(
1972
).
63.
I. M.
Mills
and
A. G.
Robiette
,
Mol. Phys.
56
,
743
(
1985
).
64.
M. S.
Child
and
L.
Halonen
,
Adv. Chem. Phys.
57
,
1
(
1984
).
65.
See EPAPS Document No. E-JCPSA6-124-004619 for six pages of tabular material containing the assigned rotational lines and their residuals (doc format). This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
66.
Y.
Kabbadj
,
M.
Herman
,
G.
Di Lonardo
,
L.
Fusina
, and
J. W. C.
Johns
,
J. Mol. Spectrosc.
150
,
535
(
1991
).
67.
T. J.
Lee
,
J. E.
Rice
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
86
,
3051
(
1987
).
68.
Y. F.
Zhu
,
R.
Shehadeh
, and
E. R.
Grant
,
J. Chem. Phys.
99
,
5723
(
1993
).
69.
J. H.
Fillion
,
A.
Campos
,
J.
Pedersen
,
N.
Shafizadeh
, and
D.
Gauyacq
,
J. Chem. Phys.
105
,
22
(
1996
).
70.
M. N. R.
Ashfold
,
B.
Tutcher
,
B.
Yang
,
Z. K.
Jin
, and
S. L.
Anderson
,
J. Chem. Phys.
87
,
5105
(
1987
).
71.
C.
Cha
,
R.
Weinkauf
, and
U.
Boesl
,
J. Chem. Phys.
103
,
5224
(
1995
).

Supplementary Material

You do not currently have access to this content.