The photoelectron shake-up satellite spectra that accompany the C1s and O1s main lines of carbon monoxide have been studied by a combination of high-resolution x-ray photoelectron spectroscopy and accurate ab initio calculations. The symmetry-adapted cluster-expansion configuration-interaction general-R method satisfactorily reproduces the satellite spectra over a wide energy region, and the quantitative assignments are proposed for the 16 and 12 satellite bands for C1s and O1s spectra, respectively. Satellite peaks above the π1π* transitions are mainly assigned to the Rydberg excitations accompanying the inner-shell ionization. Many shake-up states, which interact strongly with three-electron processes such as π2π*2 and n2π*2, are calculated in the low-energy region, while the continuous Rydberg excitations are obtained with small intensities in the higher-energy region. The vibrational structures of low-lying shake-up states have been examined for both C1s and O1s ionizations. The vibrational structures appear in the low-lying C1s satellite states, and the symmetry-dependent angular distributions for the satellite emission have enabled the Σ and Π symmetries to be resolved. On the other hand, the potential curves of the low-lying O1s shake-up states are predicted to be weakly bound or repulsive.

1.
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
2.
K.
Ueda
,
J. Phys. B
36
,
R1
(
2003
).
3.
U.
Hergenhahn
,
J. Phys. B
37
,
R89
(
2004
);
K. J.
Borve
,
L. J.
Saethre
,
T. D.
Thomas
,
T. X.
Carroll
,
N.
Berrah
,
J. D.
Bozek
, and
E.
Kukk
,
Phys. Rev. A
63
,
012506
(
2001
);
T.
Karlsen
,
L. J.
Saethre
,
K. J.
Borve
,
N.
Berrah
,
J. D.
Bozek
,
T. X.
Carroll
, and
T. D.
Thomas
,
J. Phys. Chem. A
105
,
7700
(
2001
).
4.
K.
Siegbahn
,
C.
Nordling
,
G.
Johansson
 et al,
ESCA Applied to Free Molecules
(
North-Holland
,
Amsterdam
,
1969
).
5.
U.
Gelius
,
J. Electron Spectrosc. Relat. Phenom.
5
,
985
(
1974
).
6.
J.
Schirmer
,
G.
Angonoa
,
S.
Svensson
,
D.
Nordfors
, and
U.
Gelius
,
J. Phys. B
20
,
6031
(
1987
).
7.
D.
Nordfors
,
A.
Nilsson
,
N.
Martensson
,
S.
Svensson
,
U.
Gelius
, and
H.
Agren
,
J. Electron Spectrosc. Relat. Phenom.
56
,
117
(
1991
).
8.
M. F.
Guest
,
W. R.
Rodwell
,
T.
Darko
,
I. H.
Hillier
, and
J.
Kendrick
,
J. Chem. Phys.
66
,
5447
(
1977
).
9.
G.
Angonoa
,
I.
Walter
, and
J.
Schirmer
,
J. Chem. Phys.
87
,
6789
(
1987
).
10.
G.
Fronzoni
,
G. D.
Alti
, and
P.
Decleva
,
J. Phys. B
32
,
5357
(
1999
).
11.
A.
Thiel
,
J.
Schirmer
, and
H.
Köppel
,
J. Chem. Phys.
119
,
2088
(
2003
).
12.
J.
Schirmer
,
M.
Braunstein
, and
V.
McKoy
,
Phys. Rev. A
41
,
283
(
1990
).
13.
M.
Matsumoto
,
K.
Ueda
,
E.
Kukk
 et al,
Chem. Phys. Lett.
417
,
89
(
2006
).
14.
M.
Ehara
,
H.
Nakatsuji
,
M.
Matsumoto
 et al,
J. Chem. Phys.
124
,
124311
(
2006
).
15.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
);
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
).
16.
K.
Ueda
,
M.
Hoshino
,
T.
Tanaka
 et al,
Phys. Rev. Lett.
94
,
243004
(
2005
).
17.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
);
H.
Nakatsuji
,
J. Chem. Phys.
83
,
713
(
1985
).
18.
M.
Ehara
and
H.
Nakatsuji
,
Chem. Phys. Lett.
282
,
347
(
1998
);
M.
Ehara
,
M.
Ishida
,
K.
Toyota
, and
H.
Nakatsuji
,
Reviews in Mordern Quantum Chemistry
(
World Scientific
,
Singapore
2002
);
M.
Ehara
,
J.
Hasegawa
, and
H.
Nakatsuji
, SAC-CI Method Applied to Molecular Spectroscopy, in Theory and Applications of Computational Chemistry: The First 40Years, A Volume of Technical and Historical Perspectives (
Elsevier
,
New York
,
2005
).
19.
K.
Kuramoto
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
122
,
014304
(
2005
).
20.
R.
Sankari
,
M.
Ehara
,
H.
Nakatsuji
,
Y.
Senba
,
K.
Hosokawa
,
H.
Yoshida
,
A. D.
Fanis
,
Y.
Tamenori
,
S.
Aksela
, and
K.
Ueda
,
Chem. Phys. Lett.
380
,
647
(
2003
).
21.
R.
Sankari
,
M.
Ehara
,
H.
Nakatsuji
,
A. D.
Fanis
,
S.
Aksela
,
S. L.
Sorensen
,
M. N.
Piancastelli
, and
K.
Ueda
,
Chem. Phys. Lett.
422
,
51
(
2006
).
22.
K.
Kuramoto
,
M.
Ehara
,
H.
Nakatsuji
,
M.
Kitajima
,
H.
Tanaka
,
A. D.
Fanis
,
Y.
Tamenori
, and
K.
Ueda
,
J. Electron Spectrosc. Relat. Phenom.
142
,
253
(
2005
).
23.
H.
Ohashi
,
E.
Ishiguro
,
Y.
Temanori
,
H.
Kishimoto
,
M.
Tanaka
,
M.
Irie
, and
T.
Ishikawa
,
Nucl. Instrum. Methods Phys. Res. A
467–468
,
529
(
2001
).
24.
K.
Ueda
,
H.
Yoshida
,
Y.
Senba
 et al,
Nucl. Instrum. Methods Phys. Res. A
467–468
,
1502
(
2001
);
Y.
Tamenori
,
H.
Ohashi
,
E.
Ishiguro
, and
T.
Ishikawa
,
Rev. Sci. Instrum.
73
,
1588
(
2002
).
25.
T.
Tanaka
and
H.
Kitamura
,
J. Synchrotron Radiat.
3
,
47
(
1996
).
26.
Y.
Shimizu
,
H.
Ohashi
,
Y.
Tamenori
 et al,
J. Electron Spectrosc. Relat. Phenom.
114–116
,
63
(
2001
).
27.
D. A.
Mistrov
,
A. D.
Fanis
,
M.
Kitajima
,
M.
Hoshino
,
H.
Shindo
,
T.
Tanaka
,
Y.
Tamenori
,
H.
Tanaka
,
A. A.
Pavlychev
, and
K.
Ueda
,
Phys. Rev. A
68
,
022508
(
2003
);
M.
Hoshino
,
T.
Tanaka
,
M.
Kitajima
,
H.
Tanaka
,
A. D.
Fanis
,
A. A.
Pavlychev
, and
K.
Ueda
,
J. Phys. B
36
,
L381
(
2003
).
28.
J. H.
Callomon
,
E.
Hirota
,
K.
Kuchitsu
,
W. J.
Lafferty
,
A. G.
Maki
, and
C. S.
Pote
,
Structure Data of Free Polyatomic Molecules
,
Numerical Data and Functional Relationships in Science and Technology Landolt-Bornstein, New Series, Group II
(
Springer-Verlag
,
Berlin
,
1976
).
29.
A.
Schaefer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
30.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
31.
T. H.
Dunning
, Jr.
and
P. J.
Hay
,
Methods of Electronic Structure Theory
(
Plenum
,
New York
,
1977
).
32.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
33.
R. I.
Martin
and
D. A.
Shirley
,
J. Chem. Phys.
64
,
3685
(
1976
).
34.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN03, Gaussian Inc., Pittsburgh, PA,
2003
.
35.
G. A.
Worth
,
M. H.
Beck
,
A.
Jackle
, and
H.-D.
Meyer
, The MCTDH Package, Version 8.3,
University Heidelberg
, Heidelberg, Germany,
2003
.
36.
V.
Myrseth
,
J. D.
Bozek
,
E.
Kukk
,
L. J.
Sæthre
, and
T. D.
Thomas
,
J. Electron Spectrosc. Relat. Phenom.
122
,
57
(
2002
).
37.
A. D. O.
Bawagan
and
E. R.
Davidson
,
Adv. Chem. Phys.
110
,
215
(
1999
).
38.
U.
Becker
and
D. A.
Shirley
,
Phys. Scr., T
T31
,
56
(
1990
).
39.
L.
Ungier
and
T. D.
Thomas
,
Phys. Rev. Lett.
53
,
435
(
1984
).
40.
R.
Püttner
,
I.
Dominguez
,
T. J.
Morgan
,
C.
Cisneros
,
R. F.
Fink
,
E.
Rotenberg
,
T.
Warwick
,
M.
Comke
,
G.
Kaindl
, and
A. S.
Schlachter
,
Phys. Rev. A
59
,
3415
(
1999
).
You do not currently have access to this content.