We perform model calculations of the macroscopic diffusion coefficient for a solute moving in a chiral nematic (cholesteric) liquid crystal (LC) phase applying the methodology developed by Frezzato et al. [J. Chem. Phys.122, 164904 (2005)]. Three types of solutes with different features are studied: ellipsoid [roto-translational coupling (RTC) absent], bent rod (RTC present), and two-blade propeller (with RTC and chiral shape). For each prototype molecule we estimate the effect of cholesteric helix pitch and local order on the diffusion along the helix axis. For the ellipsoidal particle we find that translational diffusion is slowed down by rotation around the short axis. For the chiral solute we show that the enantiomer with shape chirality opposite to that of the LC phase is slowed down more than the other. This provides a proof of principle of the possibility of separating the two enantiomers via transport in a suitable chiral medium.

1.
D.
Frezzato
,
C.
Zannoni
, and
G. J.
Moro
,
J. Chem. Phys.
122
,
164904
(
2005
).
2.
P. G.
de Gennes
and
P. J.
Prost
,
The Physics of Liquid Crystals
, 2nd ed. (
Oxford University Press
,
New York
,
1993
).
3.
C. W.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1994
).
5.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Noordhoff
,
Leyden
,
1973
), Chap. 5.
6.
P. F.
Perrin
,
J. Phys. Radium
7
,
33
(
1934
);
P. F.
Perrin
,
J. Phys. Radium
5
,
497
(
1934
);
P. F.
Perrin
,
J. Phys. Radium
7
,
1
(
1936
).
7.
M.
Kostur
,
M.
Schindler
,
P.
Talkner
, and
P.
Hänggi
,
Phys. Rev. Lett.
96
,
014502
(
2006
).
8.
See EPAPS Document No. E-JCPSA6-125-506634 for details about the formal tools developed to perform the numerical calculations of the diffusion coefficients in cholesteric phases. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
9.
S. C.
Harvey
and
J.
Garcia de la Torre
,
Macromolecules
13
,
960
(
1980
);
J.
Garcia de la Torre
,
M. C.
Lopez Martinez
, and
J. J.
Garcia Molina
,
Macromolecules
20
,
661
(
1987
).
10.
D.
Brune
and
S.
Kim
,
Proc. Natl. Acad. Sci. U.S.A.
90
,
3835
(
1993
).
11.
M. E.
Rose
,
Elementary Theory of Angular Momentum
(
Wiley
,
New York
,
1957
).
12.
R.
Berardi
and
C.
Zannoni
,
J. Chem. Phys.
113
,
5971
(
2000
).
13.
A.
Ferrarini
,
G. J.
Moro
, and
P. L.
Nordio
,
Phys. Rev. E
53
,
681
(
1996
).
14.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1970
).
15.
D.
Frezzato
,
C.
Zannoni
, and
G. J.
Moro
(unpublished).
16.
G.
Moro
and
J. H.
Freed
,
J. Chem. Phys.
74
,
3757
(
1981
);
G.
Moro
and
J. H.
Freed
, in
Large Scale Eigenvalues Problems
, edited by
J.
Cullum
and
R. A.
Willoughby
(
Elsevier
,
New York/North-Holland, Amsterdam
,
1986
), p.
143
.
17.
K.
Robbie
,
D. J.
Broer
, and
M. J.
Brett
,
Nature (London)
399
,
764
(
1999
).
18.
Y.
Yang
,
M.
Suzuki
,
H.
Fukui
,
H.
Shirai
, and
K.
Hanabusa
,
Chem. Mater.
18
,
1324
(
2006
).

Supplementary Material

You do not currently have access to this content.