Dynamical calculations are presented for electronically nonadiabatic vibrational deexcitation of H2 and D2 in scattering from Cu(111). Both the potential energy surface and the nonadiabatic coupling strength were obtained from density functional calculations. The theoretically predicted magnitude of the deexcitation and its dependence on incident energy and isotope are all in agreement with state-to-state scattering experiments [on Cu(100)], and this gives indirect evidence for a nonadiabatic mechanism of the observed deexcitation. Direct evidence could be obtained by measuring the chemicurrent associated with the deexcitation, and its properties have been predicted.

1.
G. O.
Sitz
,
Reports on Progress in Physics
65
,
1165
(
2002
).
3.
L.
Diekhoner
,
L.
Hornekaer
,
H.
Mortensen
,
E.
Jensen
,
A.
Baurichter
,
V.
Petrunin
, and
A. C.
Luntz
,
J. Chem. Phys.
117
,
5018
(
2002
).
4.
J. W.
Gadzuk
,
J. Phys. Chem. B
106
,
8265
(
2002
).
5.
D. C.
Langreth
and
M.
Persson
, in
Laser Spectroscopy and Photochemistry on Metal Surfaces
, edited by
H.-L.
Dai
and
W.
Ho
(
World Scientific
, River Edge, New Jersey,
1995
), Vol.
5
, p.
498
;
J. C.
Tully
,
Annu. Rev. Phys. Chem.
51
,
153
(
2000
).
[PubMed]
6.
C. T.
Rettner
,
D. J.
Auerbach
, and
H. A.
Michelsen
,
Phys. Rev. Lett.
68
,
2547
(
1992
).
7.
C. T.
Rettner
,
F.
Fabre
,
J.
Kimman
, and
D. J.
Auerbach
,
Phys. Rev. Lett.
55
,
1904
(
1985
);
[PubMed]
G. A.
Gates
,
G. R.
Darling
, and
S.
Holloway
,
J. Chem. Phys.
101
,
6281
(
1994
).
8.
Y. H.
Huang
,
C. T.
Rettner
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
Science
290
,
111
(
2000
).
9.
J. D.
White
,
J.
Chen
,
D.
Matsiev
,
D. J.
Auerbach
, and
A. M.
Wodtke
,
Nature
433
,
503
(
2005
).
10.
E.
Watts
and
G. O.
Sitz
,
J. Chem. Phys.
114
,
4171
(
2001
).
11.
L. C.
Shackman
and
G. O.
Sitz
,
J. Chem. Phys.
123
,
064712
(
2005
).
12.
E.
Watts
,
G. O.
Sitz
,
D. A.
McCormack
,
G. J.
Kroes
,
R. A.
Olsen
,
J. A.
Groeneveld
,
J. N. P.
Van Stralen
,
E. J.
Baerends
, and
R. C.
Mowrey
,
J. Chem. Phys.
114
,
495
(
2001
).
13.
M. F.
Somers
,
R. A.
Olsen
,
H. F.
Busnengo
,
E. J.
Baerends
, and
G. J.
Kroes
,
J. Chem. Phys.
121
,
11379
(
2004
).
14.
H. A.
Michelsen
and
D. J.
Auerbach
,
J. Chem. Phys.
94
,
7502
(
1991
).
15.
A. C.
Luntz
and
M.
Persson
,
J. Chem. Phys.
123
,
074704
(
2005
).
16.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
103
,
10137
(
1995
).
17.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
18.
K.
Schonhammer
and
O.
Gunnarsson
, in
Many-Body Phenomena at Surfaces
, edited by
D. C.
Langreth
and
H.
Suhl
(
Academic
, San Francisco,
1984
), p.
421
.
19.
J. R.
Trail
,
D. M.
Bird
,
M.
Persson
, and
S.
Holloway
,
J. Chem. Phys.
119
,
4539
(
2003
).
20.
Because Ps(ω) peaks at hω<515meV, quantum nonadiabatic vibrational deexcitation at hω=515 must also be accompanied by other energy transfer processes to conserve energy (lattice or translational excitation or the creation of other electron-hole pairs).
21.
M.
Gostein
and
G. O.
Sitz
,
J. Vac. Sci. Technol. A
14
(
3, Pt.2
),
1562
(
1996
).
22.
A.
Hodgson
,
P.
Samson
,
A.
Wight
, and
C.
Cottrell
,
Phys. Rev. Lett.
78
,
963
(
1997
).
You do not currently have access to this content.