Recent studies on the solvation of atomistic and nanoscale solutes indicate that a strong coupling exists between the hydrophobic, dispersion, and electrostatic contributions to the solvation free energy, a facet not considered in current implicit solvent models. We suggest a theoretical formalism which accounts for coupling by minimizing the Gibbs free energy of the solvent with respect to a solvent volume exclusion function. The resulting differential equation is similar to the Laplace-Young equation for the geometrical description of capillary interfaces but is extended to microscopic scales by explicitly considering curvature corrections as well as dispersion and electrostatic contributions. Unlike existing implicit solvent approaches, the solvent accessible surface is an output of our model. The presented formalism is illustrated on spherically or cylindrically symmetrical systems of neutral or charged solutes on different length scales. The results are in agreement with computer simulations and, most importantly, demonstrate that our method captures the strong sensitivity of solvent expulsion and dewetting to the particular form of the solvent-solute interactions.

1.
B.
Roux
and
T.
Simonson
,
Biophys. Chem.
78
,
1
(
1999
).
2.
F. M.
Richards
,
Annu. Rev. Biophys. Bioeng.
6
,
151
(
1977
).
3.
E.
Gallicchio
,
M. M.
Kubo
, and
R. M.
Levy
,
J. Phys. Chem. B
104
,
6271
(
2000
).
4.
E.
Gallicchio
,
L. Y.
Zhang
, and
R. M.
Levy
,
J. Comput. Chem.
23
,
517
(
2002
).
5.
M.
Zacharias
,
J. Phys. Chem. A
107
,
3000
(
2003
).
6.
Y.
Su
and
E.
Gallicchio
,
Biophys. Chem.
109
,
251
(
2004
).
7.
R. M.
Levy
,
L. Y.
Zhang
,
E.
Gallicchio
, and
A. K.
Felts
,
J. Am. Chem. Soc.
125
,
9523
(
2003
).
8.
D.
Bashford
and
D. A.
Case
,
Annu. Rev. Phys. Chem.
51
,
129
(
2000
).
9.
K. A.
Sharp
and
B.
Honig
,
J. Phys. Chem.
94
,
7684
(
1990
).
10.
D.
Baker
,
Curr. Opin. Struct. Biol.
15
,
137
(
2005
).
11.
M.
Nina
,
D.
Beglov
, and
B.
Roux
,
J. Phys. Chem. B
101
,
5239
(
1997
).
12.
D. M.
Huang
and
D.
Chandler
,
J. Phys. Chem. B
106
,
2047
(
2002
).
13.
H. S.
Ashbaugh
,
E. W.
Kaler
, and
M. E.
Paulaitis
,
Biophys. J.
75
,
755
(
1998
).
14.
F. H.
Stillinger
,
J. Solution Chem.
2
,
141
(
1973
).
15.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
,
J. Phys. Chem. B
103
,
4570
(
1999
).
16.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcia
,
J. Chem. Phys.
107
,
9275
(
1997
).
17.
D.
Chandler
,
Nature (London)
437
,
640
(
2005
).
18.
A.
Wallquist
and
B. J.
Berne
,
J. Phys. Chem.
99
,
2893
(
1995
).
19.
X.
Huang
,
C. J.
Margulis
, and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
11953
(
2003
).
20.
X.
Huang
,
R.
Zhou
, and
B. J.
Berne
,
J. Phys. Chem. B
109
,
3546
(
2005
).
21.
N.
Choudhury
and
B. M.
Pettitt
,
J. Am. Chem. Soc.
127
,
3556
(
2005
).
22.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Nowortya
,
Nature (London)
414
,
188
(
2001
).
23.
R.
Allen
,
S.
Melchionna
, and
J.-P.
Hansen
,
Phys. Rev. Lett.
89
,
175502
(
2002
).
24.
O.
Beckstein
,
P. C.
Biggin
, and
M. S. P.
Sansom
,
J. Phys. Chem.
105
,
12902
(
2001
).
25.
A.
Anishkin
and
S.
Sukharev
,
Biophys. J.
86
,
2883
(
2004
).
26.
J.
Dzubiella
and
J.-P.
Hansen
,
J. Chem. Phys.
120
,
5001
(
2004
).
27.
S.
Vaitheesvaran
,
J. C.
Rasaiah
, and
G.
Hummer
,
J. Chem. Phys.
121
,
7955
(
2004
).
28.
J.
Dzubiella
and
J.-P.
Hansen
,
J. Chem. Phys.
122
,
234706
(
2005
).
29.
J.
Dzubiella
and
J.-P.
Hansen
,
J. Chem. Phys.
119
,
12049
(
2003
).
30.
J.
Dzubiella
and
J.-P.
Hansen
,
J. Chem. Phys.
121
,
5514
(
2004
).
31.
R.
Zhou
,
X.
Huang
,
C.
Margulis
, and
B. J.
Berne
,
Science
305
,
1605
(
2004
).
32.
P.
Liu
,
X.
Huang
,
R.
Zhou
, and
B. J.
Berne
,
Nature (London)
437
,
159
(
2005
).
33.
J. L.
Parker
,
P. M.
Claesson
, and
P.
Attard
,
J. Phys. Chem.
98
,
8468
(
1994
).
34.
D.
Beglov
and
B.
Roux
,
J. Chem. Phys.
104
,
8678
(
1996
).
35.
P.
Kralchevsky
and
K.
Nagayama
,
Particles at Fluid Interfaces and Membranes
(
Elsevier
,
Amsterdam
,
2001
).
36.
W.
Helfrich
,
Z. Naturforsch. C
28
,
693
(
1973
).
37.
O.-Y.
Zhong-can
and
W.
Helfrich
,
Phys. Rev. A
39
,
5280
(
1989
).
38.
T.
Bieker
and
S.
Dietrich
,
Physica A
252
,
85
(
1998
).
40.
R.
Allen
,
S.
Melchionna
, and
J.-P.
Hansen
,
J. Chem. Phys.
119
,
3905
(
2003
).
41.
42.
Y.-K.
Cheng
and
P. J.
Rossky
,
Nature (London)
392
,
696
(
1998
).
43.
M.
Gerstein
and
C.
Chothia
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
10167
(
1996
).
44.
K. K. S.
Lau
,
J.
Bico
,
K. B. K.
Teo
,
M.
Chhowalla
,
G. A. J.
Amaratunga
,
W. I.
Milne
,
G. H.
McKinley
, and
K. K.
Gleason
,
Nano Lett.
3
,
1701
(
2003
).
45.
J.
Dzubiella
,
J. M. J.
Swanson
, and
J. A.
McCammon
,
Phys. Rev. Lett.
(to be published).
46.
D. G.
Triezenberg
and
R.
Zwanzig
,
Phys. Rev. Lett.
28
,
1183
(
1972
).
47.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
48.
M. K.
Gilson
,
M. E.
Davis
,
B. A.
Luty
, and
J. A.
McCammon
,
J. Phys. Chem.
97
,
3591
(
1993
).
49.
D. M.
Huang
,
P. L.
Geissler
, and
D.
Chandler
,
J. Phys. Chem. B
105
,
6704
(
2001
).
50.

The principal curvatures are formally given by the eigenvectors of the Hessian (or shape operator) of v, Ŝ, which can be expressed by the vector gradient of the unit normal vector field n(r), of the surface Ŝ=n(r)=v(r)v(r).

51.
J. R.
Henderson
,
Fundamentals of Inhomogeneous Fluids
, edited by
D.
Henderson
(
Marcel Dekker
,
New York
,
1992
).
52.
M. C.
Stewart
and
R.
Evans
,
Phys. Rev. E
71
,
011602
(
2005
).
53.
H.
Reiss
,
Adv. Chem. Phys.
9
,
1
(
1965
).
54.
R. C.
Tolman
,
J. Chem. Phys.
17
,
333
(
1949
).
55.
H.
Luo
and
C.
Tucker
,
J. Phys. Chem.
100
,
11165
(
1996
).
56.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
57.
S. R.
Manjari
and
H. J.
Kim
,
J. Chem. Phys.
123
,
014504
(
2005
).
58.
G.
Hummer
,
L. R.
Pratt
, and
A. E.
Garcia
,
J. Phys. Chem.
100
,
1206
(
1996
).
59.
D.
Paschek
,
J. Chem. Phys.
120
,
6674
(
2004
).
60.
J.
Alejandre
,
D. J.
Tildesley
, and
G. A.
Chapela
,
J. Chem. Phys.
102
,
4574
(
1995
).
61.
M. L.
Connolly
,
J. Mol. Graphics
11
,
139
(
1993
).
62.

The solute-solute LJ parameters have been calculated from the solute-water LJ parameters employing the usual combining rules. Note that the rules used by Ashbaugh et al. (Ref. 13) are different from those of Hummer et al. (Ref. 58) and Paschek (Ref. 59).

63.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
,
J. Chem. Phys.
108
,
10220
(
1998
).
64.
W.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
65.
A.
Fernandez
,
Nat. Biotechnol.
22
,
1081
(
2004
).
66.
G.
Hummer
,
S.
Garde
,
A. E.
Garcia
,
A.
Phorille
, and
L. R.
Pratt
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
8951
(
1996b
).
67.
S.
Garde
,
G.
Hummer
,
A. E.
Garcia
,
M. E.
Paulaitis
, and
L. R.
Pratt
,
Phys. Rev. Lett.
77
,
4966
(
1996
).
68.
S. A.
Safran
,
Statistical Thermodynamics of Surfaces, Interfaces and Membranes
(
Addison-Wesley
,
Reading, MA
,
1994
), Chaps. 1–3.
69.
J. A.
Sethian
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science
(
Cambridge University Press
,
Cambridge
,
1999
).
70.
T.
Frankel
,
The Geometry of Physics
(
Cambridge University Press
,
Cambridge
,
1997
).
You do not currently have access to this content.