Molecular-dynamics simulations are conducted to elucidate the critical factors affecting the transport properties of isolated polymer chains in strictly two dimensions. The relevance of surface inhomogeneity is critically examined. We unequivocally find that surface inhomogeneity is critical in obtaining transport behavior consistent with the recent measurements of surface diffusion for polymers adsorbed at the solid-liquid interface. For a systematic investigation of this point, heterogeneity was introduced by decorating the surface with impenetrable elements and we find that chain diffusivity crossed over from Rouse-type behavior to reptationlike with increasing surface coverage of obstacles. This transition in behavior occurred when the mean distance between obstacles is approximately equal to the end-to-end distance, Re, of the two-dimensional chain. Our results underscore the importance of surface disorder (not only literal obstacles but by reasonable extension also to other types of disorder) in determining the transport behavior of chains adsorbed to solids.

1.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
, Ithaca,
1985
).
2.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
, Oxford,
1986
).
3.
B. H.
Zimm
,
J. Chem. Phys.
24
,
269
(
1956
).
4.
P. E.
Rouse
,
J. Chem. Phys.
21
,
1272
(
1953
).
5.
S. A.
Sukhishvili
,
Y.
Chen
,
J. D.
Muller
,
E.
Gratton
,
K. S.
Schweizer
, and
S.
Granick
,
Nature (London)
406
,
146
(
2000
);
S. A.
Sukhishvili
,
Y.
Chen
,
J. D.
Muller
,
E.
Gratton
,
K. S.
Schweizer
, and
S.
Granick
,
Macromolecules
35
,
1776
(
2002
).
6.
B.
Maeir
and
J. O.
Radler
,
Phys. Rev. Lett.
82
,
1911
(
1999
);
B.
Maeir
and
J. O.
Radler
,
Macromolecules
33
,
7185
(
2000
).
7.
L.
Zhang
and
S.
Granick
,
Proc. Natl. Acad. Sci. U.S.A.
U.S.A.
102
,
9118
(
2005
).
8.
I.
Carmesin
and
K.
Kremer
,
J. Phys. (France)
51
,
915
(
1990
).
9.
R.
Azuma
and
H.
Takayama
,
J. Chem. Phys.
111
,
8666
(
1999
).
10.
G. W.
Slater
and
S. Y.
Wu
,
Phys. Rev. Lett.
75
,
164
(
1995
).
11.
E.
Falck
,
O.
Punkkinen
,
I.
Vattulainen
, and
T.
Ala-Nissilä
,
Phys. Rev. E
68
,
050102
(R) (
2003
);
O.
Punkkinen
,
E.
Falck
,
I.
Vattulainen
, and
T.
Ala-Nissilä
,
J. Chem. Phys.
122
,
094904
(
2005
).
[PubMed]
12.
B. J.
Alder
and
T. E.
Wainwright
,
Phys. Rev. A
1
,
18
(
1970
).
13.
T. G.
Desai
,
P.
Keblinski
,
S. K.
Kumar
, and
S.
Granick
(unpublished).
14.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Kinetic Theory
(
Wiley
, New York,
1987
), Vol.
2
.
15.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
16.
J. W.
Rudisill
and
P. T.
Cummings
,
Rheol. Acta
30
,
33
(
1991
).
17.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Anderson
,
J. Chem. Phys.
54
,
5237
(
1971
).
18.
G. S.
Grest
and
K.
Kremer
,
J. Chem. Phys.
92
,
5057
(
1990
).
19.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Clarendon
, Oxford,
1986
).
20.
D.
Richter
,
A.
Baumgartner
, and
K.
Binder
,
Phys. Rev. Lett.
47
,
109
(
1981
).
You do not currently have access to this content.