We present explicit forms of nonadiabatic coupling (NAC) elements of nuclear Schrödinger equation (SE) for a coupled three-state electronic manifold in terms of mixing angles of real electronic basis functions. If the adiabatic-diabatic transformation (ADT) angles are the mixing angles of electronic bases, ADT matrix transforms away the NAC terms and brings diabatic form of SE. ADT and NAC matrices are shown to satisfy a curl condition with nonzero divergence. We have demonstrated that the formulation of extended Born-Oppenheimer (EBO) equation from any three-state BO system is possible only when there exists a coordinate-independent ratio of the gradients for each pair of mixing angles. On the contrary, since such relations among the mixing angles lead to zero curl, we explore its validity analytically around conical intersection(s) and support numerically considering two nuclear-coordinate-dependent three surface BO models. Numerical calculations are performed by using newly derived diabatic and EBO equations and expected transition probabilities are obtained.

1.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
2.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys. (Leipzig)
84
,
457
(
1927
).
3.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
4.
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
205
,
577
(
1993
).
5.
M.
Baer
, in
Theory of Chemical Reaction Dynamics
, edited by
M.
Baer
(
CRC
,
Boca Raton, FL
,
1985
), Vol.
II
, Chap. 4.
6.
M.
Baer
and
R.
Englman
,
Chem. Phys. Lett.
265
,
105
(
1997
).
7.
M.
Baer
,
J. Chem. Phys.
107
,
10662
(
1997
).
8.
R.
Baer
,
D. M.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
9.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
40
(
1999
).
10.
A. J. C.
Varandas
and
Z. R.
Xu
,
J. Chem. Phys.
112
,
2121
(
2000
).
11.
12.
M.
Baer
,
S. H.
Lin
,
A.
Alijah
,
S.
Adhikari
, and
G. D.
Billing
,
Phys. Rev. A
62
,
32506
(
2000
).
13.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
32507
(
2000
).
14.
Z. H.
Top
and
M.
Baer
,
J. Chem. Phys.
66
,
1363
(
1977
).
15.
A.
Alijah
and
M.
Baer
,
J. Phys. Chem. A
104
,
389
(
2000
).
16.
D. J.
Griffiths
,
Introduction to Electrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1989
), Chap. 1.
17.
G. B.
Arfken
and
H. J.
Weber
,
Mathematical Methods for Physicists
(
Academic
,
San Diego
,
1995
), Chap. 1.
18.
T.
Vértesi
,
Á.
Vibók
,
G. J.
Halász
, and
M.
Baer
,
J. Chem. Phys.
121
,
4000
(
2004
).
19.
D. R.
Yarkony
,
J. Chem. Phys.
84
,
3206
(
1986
).
20.
A. M.
Mebel
,
M.
Baer
, and
S. H.
Lin
,
J. Chem. Phys.
112
,
10703
(
2000
).
21.
A. M.
Mebel
,
A.
Yahalom
,
R.
Englman
, and
M.
Baer
,
J. Chem. Phys.
115
,
3673
(
2001
).
22.
A. M.
Mebel
,
G. J.
Halász
,
A.
Vibók
,
A.
Alijah
, and
M.
Baer
,
J. Chem. Phys.
117
,
991
(
2002
).
23.
M.
Baer
,
A.
Alijah
, and
G. D.
Billing
,
Int. J. Quantum Chem.
90
,
1577
(
2002
).
24.
G. D.
Billing
,
M.
Baer
, and
A. M.
Mebel
,
Chem. Phys. Lett.
372
,
1
(
2003
).
25.
M.
Baer
,
T.
Vértesi
,
G. J.
Halász
,
Á.
Vibók
, and
S.
Suhai
,
Faraday Discuss.
127
,
337
(
2004
).
26.
P.
Puzari
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
121
,
707
(
2004
).
27.
M.
Baer
,
J. Phys. Chem. A
104
,
3181
(
2000
).
28.
See, for example, Figs. 1–5,
Á.
Vibók
,
G. J.
Halász
, and
M.
Baer
,
Chem. Phys. Lett.
399
,
7
(
2004
).
29.
R.
Abrol
and
A.
Kuppermann
,
J. Chem. Phys.
116
,
1035
(
2002
).
30.
M.
Baer
,
T.
Vértesi
,
G. J.
Halász
, and
Á.
Vibók
,
J. Phys. Chem. A
108
,
9134
(
2004
).
You do not currently have access to this content.