Biased Born-Oppenheimer molecular dynamics simulations are performed to compute redox potential and free energy curves for the redox half reaction Ag+Ag2++e in aqueous solution. The potential energy surfaces of reactant and product state are linearly coupled and the system transferred from the reduced state to the oxidized state by variation of the coupling parameter from 0 to 1. The redox potential is obtained by thermodynamic integration of the average ionization energy of Ag+. Diabatic free energy curves of reduced (R) and oxidized (O) states are obtained to good statistical accuracy by reweighting and combining the set of biased distributions of the ionization energy. The diabatic free energy curves of Ag+ and Ag2+ are parabolic over a wide range of the reaction coordinate in agreement with the linear response assumption that underlies Marcus theory. However, we observe deviations from parabolic behavior in the equilibrium region of Ag+ and find different values for the reorganization free energy of R (1.4 eV) and O (0.9 eV). The computed reorganization free energy of Ag2+ is in good agreement with the experimental estimate of 0.9–1.2 eV obtained from photoelectron spectroscopy. As suggested by our calculations, the moderate deviation from linear response behavior found for Ag+ is likely related to the highly fluxional solvation shell of this ion, which exhibits water exchange reactions on the picosecond time scale of the present molecular dynamics simulation.

1.
A.
Warshel
,
J. Phys. Chem.
86
,
2218
(
1982
).
2.
A.
Warshel
and
J. K.
Hwang
,
J. Chem. Phys.
84
,
4938
(
1986
).
3.
J. K.
Hwang
and
A.
Warshel
,
J. Am. Chem. Soc.
109
,
715
(
1987
).
4.
A.
Warshel
,
Z. T.
Chu
, and
W. W.
Parson
,
Science
246
,
112
(
1989
).
5.
G.
King
and
A.
Warshel
,
J. Chem. Phys.
93
,
8682
(
1990
).
6.
R. A.
Kuharski
,
J. S.
Bader
,
D.
Chandler
,
M.
Sprik
,
M. L.
Klein
, and
R. W.
Impey
,
J. Chem. Phys.
89
,
3248
(
1988
).
7.
E. A.
Carter
and
J. T.
Hynes
,
J. Phys. Chem.
93
,
2184
(
1989
).
8.
M.
Tachiya
,
J. Phys. Chem.
93
,
7050
(
1989
).
9.
R. B.
Yelle
and
Y.
Ichiye
,
J. Phys. Chem. B
101
,
4127
(
1997
).
10.
K.
Ando
,
J. Chem. Phys.
106
,
116
(
1997
).
11.
K.
Ando
,
J. Chem. Phys.
114
,
9040
(
2001
).
12.
K.
Ando
,
J. Chem. Phys.
114
,
9470
(
2001
).
13.
K.
Ando
,
J. Chem. Phys.
115
,
5228
(
2001
).
14.
D. W.
Small
,
D. V.
Matyushov
, and
G. A.
Voth
,
J. Am. Chem. Soc.
125
,
7470
(
2003
).
15.
T.
Ishida
,
J. Phys. Chem. B
109
,
18558
(
2005
).
16.
D. A.
Rose
and
I.
Benjamin
,
J. Chem. Phys.
100
,
3545
(
1994
).
17.
D. A.
Rose
and
I.
Benjamin
,
Chem. Phys. Lett.
234
,
209
(
1995
).
18.
J. B.
Straus
and
G. A.
Voth
,
J. Phys. Chem.
97
,
7388
(
1993
).
19.
J. B.
Straus
,
A.
Calhoun
, and
G. A.
Voth
,
J. Chem. Phys.
102
,
529
(
1995
).
20.
A.
Calhoun
and
G. A.
Voth
,
J. Phys. Chem.
100
,
10746
(
1996
).
21.
A.
Calhoun
and
G. A.
Voth
,
J. Phys. Chem. B
102
,
8563
(
1998
).
22.
A.
Calhoun
and
G. A.
Voth
,
J. Chem. Phys.
109
,
4569
(
1998
).
23.
A.
Calhoun
,
M. T.M.
Koper
, and
G. A.
Voth
,
J. Phys. Chem. B
103
,
3442
(
1999
).
24.
A.
Calhoun
,
M. T.M.
Koper
, and
G. A.
Voth
,
Chem. Phys. Lett.
305
,
94
(
1999
).
25.
C.
Hartnig
and
M. T.M.
Koper
,
J. Chem. Phys.
115
,
8540
(
2001
).
26.
C.
Hartnig
and
T. M.
Koper
,
J. Phys. Chem. B
108
,
3824
(
2004
).
27.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
28.
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
(
1956
).
29.
R. A.
Marcus
,
J. Chem. Phys.
26
,
867
(
1957
).
30.
R. A.
Marcus
,
J. Chem. Phys.
43
,
679
(
1965
).
31.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
32.
Adv. Chem. Phys.
106
,
107
(
1999
).
33.
A. V.
Barzykin
,
P. A.
Frantsukov
,
K.
Seki
, and
M.
Tachiya
,
Adv. Chem. Phys.
123
,
511
(
2002
).
34.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
35.
I.
Tavernelli
,
R.
Vuilleumier
, and
M.
Sprik
,
Phys. Rev. Lett.
88
,
213002
(
2002
).
36.
J.
Blumberger
,
L.
Bernasconi
,
I.
Tavernelli
,
R.
Vuilleumier
, and
M.
Sprik
,
J. Am. Chem. Soc.
126
,
3928
(
2004
).
37.
J.
Blumberger
and
M.
Sprik
,
J. Phys. Chem. B
108
,
6529
(
2004
).
38.
J.
Blumberger
and
M.
Sprik
,
J. Phys. Chem. B
109
,
6793
(
2005
).
39.
Y.
Tateyama
,
J.
Blumberger
,
M.
Sprik
, and
I.
Tavernelli
,
J. Chem. Phys.
122
,
234505
(
2005
).
40.
J.
Blumberger
,
Y.
Tateyama
, and
M.
Sprik
,
Comput. Phys. Commun.
169
,
256
(
2005
).
41.
J.
Blumberger
and
M.
Sprik
,
Theor. Chem. Acc.
(in press).
42.
M.
Tachiya
,
J. Phys. Chem.
97
,
5911
(
1993
).
43.
J.
VandeVondele
,
R.
Lynden-Bell
,
E. J.
Meijer
, and
M.
Sprik
,
J. Phys. Chem. B
(in press).
44.
R.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
45.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
46.
Understanding Molecular Simulation—From Algorithms to Applications
, edited by
D.
Frenkel
and
B.
Smit
(
Academic
,
San Diego
,
1996
).
47.
R.
Vuilleumier
and
M.
Sprik
,
J. Chem. Phys.
115
,
3454
(
2001
).
48.
R.
Ayala Espinar
and
M.
Sprik
(unpublished).
49.
CPMD Version 3.10.0, The CPMD consortium, MPI für Festkörperforschung and the IBM Zurich Research Laboratory,
2005
; http://www.cmpd/prg.54458–
50.
S.
Nose
,
J. Chem. Phys.
81
,
511
(
1984
).
51.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
52.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
53.
N.
Troullier
and
J.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
54.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
55.
C.
Lee
,
W.
Yang
, and
R.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
56.
M.
Souaille
and
B.
Roux
,
Comput. Phys. Commun.
135
,
40
(
2001
).
57.
Chemistry of the Elements
, 2nd ed., edited by
N. N.
Greenwood
and
A.
Earnshaw
(
Butterworth-Heinemann
,
Oxford
,
1997
).
58.
P.
Delahay
and
A.
Dziedzic
,
J. Chem. Phys.
80
,
5793
(
1984
).
59.
CRC Handbook of Chemistry and Physics
, 75th ed., edited by
D. R.
Lide
(
CRC
, Boca Raton,
1995
).
60.
Y.
Marcus
,
J. Chem. Soc., Faraday Trans.
87
,
2995
(
1991
).
61.
L.
Bernasconi
,
J.
Blumberger
,
M.
Sprik
, and
R.
Vuilleumier
,
J. Chem. Phys.
121
,
11885
(
2004
).
62.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
You do not currently have access to this content.