In general, the direct application of the Jarzynski equality (JE) to reconstruct potentials of mean force (PMFs) from a small number of nonequilibrium unidirectional steered molecular-dynamics (SMD) paths is hindered by the lack of sampling of extremely rare paths with negative dissipative work. Such trajectories that transiently violate the second law of thermodynamics are crucial for the validity of JE. As a solution to this daunting problem, we propose a simple and efficient method, referred to as the FRmethod, for calculating simultaneously both the PMF U(z) and the corresponding diffusion coefficient D(z) along a reaction coordinate z for a classical many-particle system by employing a small number of fast SMD pullings in both forward (F) and time reverse (R) directions, without invoking JE. By employing Crooks [Phys. Rev. E61, 2361 (2000)] transient fluctuation theorem (that is more general than JE) and the stiff-spring approximation, we show that (i) the mean dissipative work W¯d in the F and R pullings is the same, (ii) both U(z) and W¯d can be expressed in terms of the easily calculable mean work of the F and R processes, and (iii) D(z) can be expressed in terms of the slope of W¯d. To test its viability, the FR method is applied to determine U(z) and D(z) of single-file water molecules in single-walled carbon nanotubes (SWNTs). The obtained U(z) is found to be in very good agreement with the results from other PMF calculation methods, e.g., umbrella sampling. Finally, U(z) and D(z) are used as input in a stochastic model, based on the Fokker-Planck equation, for describing water transport through SWNTs on a mesoscopic time scale that in general is inaccessible to MD simulations.

1.
B.
Roux
,
Curr. Opin. Struct. Biol.
12
,
182
(
2002
).
2.
Computational Biochemistry and Biophysics
, edited by
O. M.
Becker
,
A. D.
MacKerell
,
B.
Roux
, and
M.
Watanabe
(
Marcel Dekker
,
New York
,
2001
).
3.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
Oxford
,
2001
).
4.
A. R.
Leach
,
Molecular Modelling: Principles and Applications
, 2nd ed. (
Prentice-Hall
,
Upper Saddle River
,
2001
).
5.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation from Algorithms to Applications
(
Academic
,
California
,
2002
).
6.
H.
Risken
,
The Fokker-Planck Equation: Methods of Solution and Applications
, 3rd ed. (
Springer-Verlag
,
Telos
,
1996
).
7.
T.
Simonson
,
G.
Archontis
, and
M.
Karplus
,
Acc. Chem. Res.
35
,
430
(
2002
).
8.
B.
Roux
,
Comput. Phys. Commun.
91
,
275
(
1995
).
9.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
10.
B.
Isralewitz
,
J.
Baudry
,
J.
Gullingsrud
,
D.
Kosztin
, and
K.
Schulten
,
J. Mol. Graphics
19
,
13
(
2001
).
11.
M. O.
Jensen
,
S.
Park
,
E.
Tajkhorshid
, and
K.
Schulten
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
6731
(
2002
).
12.
S.
Park
and
K.
Schulten
,
J. Chem. Phys.
120
,
5946
(
2004
).
13.
C.
Jarzynski
,
Phys. Rev. Lett.
78
,
2690
(
1997
).
14.
C.
Jarzynski
,
Phys. Rev. E
56
,
5018
(
1997
).
15.
J.
Liphardt
,
S.
Dumont
,
S. B.
Smith
,
I.
Tinoco
, and
C.
Bustamante
,
Science
296
,
1832
(
2002
).
16.
C.
Bustamante
,
J.
Liphardt
, and
F.
Ritort
,
Phys. Today
58
(
7
),
43
(
2005
).
17.
J.
Gore
,
F.
Ritort
, and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
12564
(
2003
).
18.
F.
Ritort
,
C.
Bustamante
, and
I.
Tinoco
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
13544
(
2002
).
19.
D. A.
Hendrix
and
C.
Jarzynski
,
J. Chem. Phys.
114
,
5974
(
2001
).
20.
G.
Hummer
,
J. Chem. Phys.
114
,
7330
(
2001
).
21.
G.
Hummer
and
A.
Szabo
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
3658
(
2001
).
22.
G.
Hummer
and
A.
Szabo
,
Acc. Chem. Res.
38
,
504
(
2005
).
23.
E.
Atilgan
and
S. X.
Sun
,
J. Chem. Phys.
121
,
10392
(
2004
).
24.
S. X.
Sun
,
J. Chem. Phys.
118
,
5769
(
2003
).
25.
D. M.
Zuckerman
and
T. B.
Woolf
,
Phys. Rev. Lett.
89
,
180602
(
2002
).
26.
D. M.
Zuckerman
and
T. B.
Woolf
,
Chem. Phys. Lett.
351
,
445
(
2002
).
27.
D. J.
Evans
and
D. J.
Searles
,
Adv. Phys.
51
,
1529
(
2002
).
28.
G. M.
Wang
,
E. M.
Sevick
,
E.
Mittag
,
D. J.
Searles
, and
D. J.
Evans
,
Phys. Rev. Lett.
89
,
050601
(
2002
).
29.
P.
Vidossich
,
M.
Cascella
, and
P.
Carloni
,
Proteins
55
,
924
(
2004
).
30.
G. E.
Crooks
,
Phys. Rev. E
61
,
2361
(
2000
).
31.
S.
Park
,
F.
Khalili-Araghi
,
E.
Tajkhorshid
, and
K.
Schulten
,
J. Chem. Phys.
119
,
3559
(
2003
).
32.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
33.
M.
Cascella
,
L.
Guidoni
,
A.
Maritan
,
U.
Rothlisberger
, and
P.
Carloni
,
J. Phys. Chem. B
106
,
13027
(
2002
).
34.
R.
Amaro
,
E.
Tajkhorshid
, and
Z.
Luthey-Schulten
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
7599
(
2003
).
35.
R.
Amaro
and
Z.
Luthey-Schulten
,
Chem. Phys.
307
,
147
(
2004
).
36.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
37.
T.
Rodinger
and
R.
Pomes
,
Curr. Opin. Struct. Biol.
15
,
164
(
2005
).
38.
N.
Lu
,
J. K.
Singh
, and
D. A.
Kofke
,
J. Chem. Phys.
118
,
2977
(
2003
).
39.
N. D.
Lu
and
T. B.
Woolf
,
Mol. Phys.
102
,
173
(
2004
).
40.
N. D.
Lu
,
D.
Wu
,
T. B.
Woolf
, and
D. A.
Kofke
,
Phys. Rev. E
69
,
05772
(
2004
).
41.
M. R.
Shirts
,
E.
Bair
,
G.
Hooker
, and
V. S.
Pande
,
Phys. Rev. Lett.
91
,
140601
(
2003
).
42.
M. R.
Shirts
and
V. S.
Pande
,
J. Chem. Phys.
122
,
144107
(
2005
).
43.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
44.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature (London)
414
,
188
(
2001
).
45.
A.
Berezhkovskii
and
G.
Hummer
,
Phys. Rev. Lett.
89
,
064503
(
2002
).
46.
A.
Waghe
,
J. C.
Rasaiah
, and
G.
Hummer
,
J. Chem. Phys.
117
,
10789
(
2002
).
47.
A.
Kalra
,
S.
Garde
, and
G.
Hummer
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
10175
(
2003
).
48.
D. Y.
Lu
,
Y.
Li
,
U.
Ravaioli
, and
K.
Schulten
,
J. Phys. Chem. B
109
,
11461
(
2005
).
49.
F.
Zhu
,
E.
Tajkhorshid
, and
K.
Schulten
,
Phys. Rev. Lett.
93
,
224501
(
2004
).
50.
F. Q.
Zhu
and
K.
Schulten
,
Biophys. J.
85
,
236
(
2003
).
51.
J.
Dzubiella
,
R. J.
Allen
, and
J. P.
Hansen
,
J. Chem. Phys.
120
,
5001
(
2004
).
52.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
53.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
54.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
 et al.,
J. Phys. Chem. B
102
,
3586
(
1998
).
55.
L.
Kalé
,
R.
Skeel
,
M.
Bhandarkar
,
R.
Brunner
,
A.
Gursoy
,
N.
Krawetz
,
J.
Phillips
,
A.
Shinozaki
,
K.
Varadarajan
, and
K.
Schulten
,
J. Comput. Phys.
151
,
283
(
1999
).
56.
S.
Andreev
,
D.
Reichman
, and
G.
Hummer
,
J. Chem. Phys.
123
,
194502
(
2005
).
57.
D.
Collin
,
F.
Ritort
,
C.
Jarzynski
,
S. B.
Smith
,
I.
Tinoco
, and
C.
Bustamante
,
Nature (London)
437
,
231
(
2005
).
You do not currently have access to this content.