We have modeled transport properties of nanostructures using Green’s-function method within the framework of the density-functional theory. The scheme is computationally demanding, so numerical methods have to be chosen carefully. A typical solution to the numerical burden is to use a special basis-function set, which is tailored to the problem in question, for example, the atomic-orbital basis. In this paper we present our solution to the problem. We have used the finite-element method with a hierarchical high-order polynomial basis, the so-called p elements. This method allows the discretation error to be controlled in a systematic way. The p elements work so efficiently that they can be used to solve interesting nanosystems described by nonlocal pseudopotentials. We demonstrate the potential of the implementation with two different systems. As a test system a simple Na-atom chain between two leads is modeled and the results are compared with several previous calculations. Secondly, we consider a thin hafnium dioxide (HfO2) layer on a silicon surface as a model for a gate structure of the next generation of microelectronics.

1.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
, Cambridge,
1995
).
3.
A.
Nitzan
and
M. A.
Ratner
,
Science
30
,
1384
(
2003
).
4.
Y.
Luo
,
C. P.
Collier
,
J. O.
Jeppesen
 et al.,
ChemPhysChem
3
,
519
(
2002
).
5.
Y.-H.
Kim
,
S. S.
Jang
,
Y. H.
Jang
, and
W. A.
Goddard
,
Phys. Rev. Lett.
94
,
156801
(
2005
).
6.
K.
Burke
,
R.
Car
, and
R.
Gebauer
,
Phys. Rev. Lett.
94
,
146803
(
2005
).
7.
K. S.
Thygesen
and
K. W.
Jacobsen
,
Phys. Rev. B
72
,
033401
(
2005
).
8.
P.
Sautet
and
C.
Joachim
,
Phys. Rev. B
38
,
12238
(
1988
).
9.
L.
Chico
,
L. X.
Benedict
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
54
,
2600
(
1996
).
10.
J.
Taylor
,
H.
Guo
, and
J.
Wang
,
Phys. Rev. B
63
,
245407
(
2001
).
11.
M.
Brandbyge
,
J. L.
Mozos
,
P.
Ordejoń
,
J. L.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
12.
M. B.
Nardelli
,
J.-L.
Fattebert
, and
J.
Bernholc
,
Phys. Rev. B
64
,
245423
(
2001
).
13.
K. S.
Thygesen
,
M. V.
Bollinger
, and
K. W.
Jacobsen
,
Phys. Rev. B
67
,
115404
(
2003
).
14.
D.
Wortmann
,
H.
Ishida
, and
S.
Blugel
,
Phys. Rev. B
66
,
075113
(
2002
).
15.
A.
Calzolari
,
N.
Marzari
,
I.
Souza
, and
M. B.
Nardelli
,
Phys. Rev. B
69
,
035108
(
2004
).
16.
P. A.
Khomyakov
and
G.
Brocks
,
Phys. Rev. B
70
,
195402
(
2004
).
17.
E.
Polizzi
and
A. N.
Ben
,
J. Comput. Phys.
202
,
150
(
2005
).
18.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
19.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
20.
J.
Arponen
,
P.
Hautojärvi
,
R.
Nieminen
, and
E.
Pajanne
,
J. Phys. F: Met. Phys.
3
,
2092
(
1973
).
21.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
119
,
67
(
1999
).
22.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
23.
D. R.
Bowler
and
M. J.
Gillan
,
Chem. Phys. Lett.
325
,
473
(
2000
).
24.
Y.
Xue
,
S.
Datta
, and
M. A.
Ratner
,
Chem. Phys.
281
,
151
(
2002
).
25.
P.
Havu
,
V.
Havu
,
M. J.
Puska
, and
R. M.
Nieminen
,
Phys. Rev. B
69
,
115325
(
2004
).
26.
M.
Ainsworth
and
J.
Coyle
,
Int. J. Numer. Methods Eng.
58
,
2103
(
2003
).
27.
J. K.
Reid
and
I. S.
Duff
,
ACM Trans. Math. Softw.
9
,
302
(
1983
).
28.
I. S.
Duff
,
Comput. Phys. Commun.
97
,
45
(
1996
).
29.
The Harwell Subroutine Library
, see http://www.cse.clrc.ac.uk/nag/hsl/
30.
A.
Gupta
,
ACM Trans. Math. Softw.
28
,
321
(
2002
).
31.
T. A.
Davis
,
ACM Trans. Math. Softw.
30
,
353
(
2004
).
32.
J. W.
Demmel
,
S. C.
Eisenstat
,
J. R.
Gilbert
,
X. S.
Lia
, and
J. W.H.
Li
,
SIAM J. Matrix Anal. Appl.
20
,
720
(
1999
).
33.
A.
George
and
J. W.-H.
Liu
,
Computer Solution of Large Sparse Positive Definite Systems
(
Prentice-Hall
, Englewood Cliffs, NJ,
1981
).
34.
Automatically Tuned Linear Algebra Software (ATLAS)
, http://math-atlas.sourceforge.net/
35.
K.
Goto
and
R.
van de Geijn
,
Department of Computer Sciences, The University of Texas
at Austin, Report No. TR-2002-55,
2002
(unpublished).
38.
N.
Agrait
,
A. L.
Yeyati
, and
J. M.
van Ruitenbeek
,
Phys. Rep.
377
,
81
(
2003
).
39.
R. H.M.
Smit
,
C.
Untiedt
,
G.
Rubio-Bollinger
,
R. C.
Segers
, and
J. M.
van Ruitenbeek
,
Phys. Rev. Lett.
91
,
076805
(
2003
).
40.
H.-S.
Sim
,
H.-W.
Lee
, and
K. J.
Chang
,
Phys. Rev. Lett.
87
,
096803
(
2001
).
41.
N. D.
Lang
,
Phys. Rev. Lett.
79
,
1357
(
1997
).
42.
S.
Tsukamoto
and
K.
Hirose
,
Phys. Rev. B
66
,
161402
(R) (
2002
).
43.
Y.-J.
Lee
,
M.
Brandbyge
,
M. J.
Puska
,
J.
Taylor
,
K.
Stokbro
, and
R. M.
Nieminen
,
Phys. Rev. B
69
,
125409
(
2004
).
44.
P.
Havu
,
T.
Torsti
,
M. J.
Puska
, and
R. M.
Nieminen
,
Phys. Rev. B
66
,
075401
(
2002
).
45.
A. I.
Kingon
,
J. P.
Maria
, and
S. K.
Streiffer
,
Nature (London)
406
,
1032
(
2000
).
46.
H. R.
Huff
,
A.
Hou
,
C.
Lim
 et al.,
Microelectron. Eng.
69
,
152
(
2003
).
47.
M. H.
Hakala
and
A. S.
Foster
,
J. Appl. Phys.
(to be published).
48.
L. R.C.
Fonseca
,
A. A.
Demkov
, and
A.
Knizhnik
,
Phys. Status Solidi B
239
,
48
(
2003
).
49.
J. L.
Gavartin
,
L.
Fonseca
,
G.
Bersuker
, and
A. L.
Shluger
,
Microelectron. Eng.
84
,
412
(
2005
).
50.
V.
Fiorentini
and
G.
Gulleri
,
Phys. Rev. Lett.
89
,
266101
(
2002
).
51.
P. W.
Peacock
and
J.
Robertson
,
Phys. Rev. Lett.
92
,
057601
(
2004
).
You do not currently have access to this content.