We investigate the structure of a binary mixture of particles interacting via purely repulsive point Yukawa pair potentials with a common inverse screening length λ. Using the hypernetted chain closure to the Ornstein-Zernike equations, we find that for a system with “ideal” (Berthelot mixing rule) pair-potential parameters for the interaction between unlike species, the asymptotic decay of the total correlation functions crosses over from monotonic to damped oscillatory on increasing the fluid total density at fixed composition. This gives rise to a Kirkwood line in the phase diagram. We also consider a “nonideal” system, in which the Berthelot mixing rule is multiplied by a factor (1+δ). For any δ>0 the system exhibits fluid-fluid phase separation and remarkably the ultimate decay of the correlation functions is now monotonic for all (mixture) state points. Only in the limit of vanishing concentration of either species does one find oscillatory decay extending to r=. In the nonideal case the simple random-phase approximation provides a good description of the phase separation and the accompanying Lifshitz line.

1.
See, e.g.,
J.-P.
Hansen
and
H.
Löwen
,
Annu. Rev. Phys. Chem.
51
,
209
(
2000
), and references therein.
2.
For a recent review see
A.
Piel
and
A.
Melzer
,
Adv. Space Res.
29
,
1255
(
2002
), and references therein.
3.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic
,
London
,
1986
).
4.
A. A.
Louis
,
P. G.
Bolhuis
, and
J.-P.
Hansen
,
Phys. Rev. E
62
,
7961
(
2000
).
5.
A. J.
Archer
and
R.
Evans
,
Phys. Rev. E
64
,
041501
(
2001
).
6.
A. J.
Archer
,
C. N.
Likos
, and
R.
Evans
,
J. Phys.: Condens. Matter
14
,
12031
(
2002
).
7.
R.
Finken
,
J.-P.
Hansen
, and
A. A.
Louis
,
J. Stat. Phys.
110
,
1015
(
2003
).
8.
M.
Baus
and
J.-P.
Hansen
,
Phys. Rep.
59
,
1
(
1980
), and references therein.
9.
P.
Hopkins
,
A. J.
Archer
, and
R.
Evans
,
Phys. Rev. E
71
,
027401
(
2005
).
11.
C. N.
Likos
,
A.
Lang
,
M.
Watzlawek
, and
H.
Löwen
,
Phys. Rev. E
63
,
031206
(
2001
).
12.
A.
Lang
,
C. N.
Likos
,
M.
Watzlawek
, and
H
Löwen
,
J. Phys.: Condens. Matter
12
,
5087
(
2000
).
13.
W.
Daughton
,
M. S.
Murillo
, and
L.
Thode
,
Phys. Rev. E
61
,
2129
(
2000
).
14.
R.
Evans
,
R. J.F
Leote de Carvalho
,
J. R.
Henderson
, and
D. C.
Hoyle
,
J. Chem. Phys.
100
,
591
(
1994
);
see also
G. A.
Martynov
,
Fundamental Theory of Liquids: Methods of Distribution Functions
(
Hilger
,
Bristol
,
1992
).
15.

Note that the RPA results of Eqs. (11) and (13) predict unphysical behavior of hij(r) as r0. However, we are concerned here with hij(r) as r where the RPA results do capture the essential physics.

16.
J. G.
Kirkwood
,
Chem. Rev. (Washington, D.C.)
19
,
275
(
1936
).
17.
R. J.
F Leote de Carvalho
,
R.
Evans
, and
Y.
Rosenfeld
,
Phys. Rev. E
59
,
1435
(
1999
).
18.
G.
Gompper
and
M.
Schick
,
Phys. Rev. B
41
,
9148
(
1990
);
R. M.
Hornreich
,
R.
Liebmann
,
H. G.
Schuster
, and
W.
Selke
,
Z. Phys. B
35
,
91
(
1979
).
19.
See, e.g.,
C.
Caccamo
,
Phys. Rep.
274
,
1
(
1996
), and references therein.
20.
You do not currently have access to this content.