We investigate the performance of contemporary semilocal and hybrid density functionals for bond energetics, structures, dipole moments, and harmonic frequencies of 3d transition-metal (TM) compounds by comparison with gas-phase experiments. Special attention is given to the nonempirical metageneralized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett.91, 146401 (2003)], which has been implemented in TURBOMOLE for the present work. Trends and error patterns for classes of homologous compounds are analyzed, including dimers, monohydrides, mononitrides, monoxides, monofluorides, polyatomic oxides and halogenides, carbonyls, and complexes with organic π ligands such as benzene and cyclopentadienyl. Weakly bound systems such as Ca2, Mn2, and Zn2 are discussed. We propose a reference set of reaction energies for benchmark purposes. Our all-electron results with quadruple zeta valence basis sets validate semilocal density-functional theory as the workhorse of computational TM chemistry. Typical errors in bond energies are substantially larger than in (organic) main group chemistry, however. The Becke-Perdew’86 [Phys. Rev. A38, 3098 (1988); Phys. Rev. B33, 8822 (1986)] GGA and the TPSS meta-GGA have the best price/performance ratio, while the TPSS hybrid functional achieves a slightly lower mean absolute error in bond energies. The popular Becke three-parameter hybrid B3LYP underbinds significantly and tends to overestimate bond distances; we give a possible explanation for this. We further show that hybrid mixing does not reduce the width of the error distribution on our reference set. The error of a functional for the s-d transfer energy of a TM atom does not predict its error for TM bond energies and bond lengths. For semilocal functionals, self-interaction error in one- and three-electron bonds appears to be a major source of error in TM reaction energies. Nevertheless, TPSS predicts the correct ground-state symmetry in the vast majority of cases and rarely fails qualitatively. This further confirms TPSS as a general purpose functional that works throughout the periodic table. We also give workstation timing comparisons for the 645-atom protein crambin.

1.
Computational Transition Metal Chemistry
,
Chemical Reviews
Vol.
100
, edited by
E. R.
Davidson
(
American Chemical Society
,
Washington, DC
,
2000
).
2.
I.
Hyla-Kryspin
and
S.
Grimme
,
Organometallics
23
,
5581
(
2004
).
3.
J.
Harris
and
R. O.
Jones
,
J. Chem. Phys.
70
,
830
(
1979
).
4.
B.
Delley
,
A. J.
Freeman
, and
D. E.
Ellis
,
Phys. Rev. Lett.
50
,
488
(
1983
).
5.
E. J.
Baerends
and
P.
Ros
,
Mol. Phys.
30
,
1735
(
1975
).
6.
A.
Berces
and
T.
Ziegler
,
Top. Curr. Chem.
182
,
41
(
1996
).
7.
A.
Görling
,
S. B.
Trickey
,
P.
Gisdakis
, and
N.
Rösch
,
Topics in Organomet. Chem.
4
,
109
(
1999
).
8.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
9.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
10.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
11.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
12.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
13.
J. P.
Perdew
,
J.
Tao
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
6898
(
2004
).
14.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
12129
(
2003
);
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
121
,
11507
(E) (
2004
).
15.
J. P.
Perdew
and
K.
Schmidt
, in
Density Functional Theory and Its Applications to Materials
, edited by
V.
Van Doren
and
C.
Van Alsenoy
(
AIP
,
Melville, NY
,
2001
).
16.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
J. Chem. Phys.
123
,
062201
(
2005
).
17.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
Phys. Rev. B
69
,
075102
(
2004
).
18.
G. I.
Csonka
,
A.
Ruzsinszky
,
J.
Tao
, and
J. P.
Perdew
,
Int. J. Quantum Chem.
101
,
506
(
2005
).
19.
A.
Ruzsinszky
,
J. P.
Perdew
, and
G. I.
Csonka
,
J. Phys. Chem. A
109
,
11006
(
2005
).
20.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(E) (
1997
).
22.
23.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
24.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
25.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
26.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
27.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
(
2003
).
28.
R.
Neumann
,
R. H.
Nobes
, and
N. C.
Handy
,
Mol. Phys.
87
,
1
(
1996
).
29.
C.
Adamo
,
M.
Ernzerhof
, and
G. E.
Scuseria
,
J. Chem. Phys.
112
,
2643
(
2000
).
30.
A. V.
Arbuznikov
,
M.
Kaupp
,
V. G.
Malkin
,
R.
Reviakine
, and
O. L.
Malkina
,
Phys. Chem. Chem. Phys.
4
,
5467
(
2002
).
31.
A.
Görling
and
M.
Ernzerhof
,
Phys. Rev. A
51
,
4501
(
1995
).
32.
A. V.
Arbuznikov
and
M.
Kaupp
,
Chem. Phys. Lett.
381
,
495
(
2003
).
33.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
);
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
5179
(E) (
1999
).
34.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
35.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
36.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
,
Chem. Phys. Lett.
257
,
213
(
1996
).
37.
M.
Kattannek
,
F.
Furche
, and
R.
Ahlrichs
(unpublished).
38.
M.
Sierka
,
A.
Hogekamp
, and
R.
Ahlrichs
,
J. Chem. Phys.
118
,
9136
(
2003
).
39.
B. G.
Johnson
,
P. M.W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
40.
C.
Jelsch
,
M. M.
Teeter
,
V.
Lamzin
,
V.
Pichon-Pesme
,
R. H.
Blessing
, and
C.
Lecomte
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
3171
(
2000
).
41.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
42.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
242
,
652
(
1995
).
43.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
44.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
45.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
46.
TURBOMOLE V5-7-1;
47.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
48.
G. E.
Scuseria
and
V. N.
Staroverov
, in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
, Amsterdam, 2005).
49.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
50.
V. R.
Saunders
and
I. H.
Hillier
,
Int. J. Quantum Chem.
7
,
699
(
1973
).
51.
R.
Bauernschmitt
and
R.
Ahlrichs
,
J. Chem. Phys.
104
,
9047
(
1996
).
52.
G. L.
Gutsev
and
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem. A
107
,
4755
(
2003
).
53.
G. L.
Gutsev
,
M. D.
Mochena
,
P.
Jena
,
C. W.
Bauschlicher
, Jr.
, and
H.
Partridge
 III
,
J. Chem. Phys.
121
,
6785
(
2004
).
54.
S.
Yanagisawa
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
112
,
545
(
2000
).
55.
C. J.
Barden
,
J. C.
Rienstra-Kiracofe
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
113
,
690
(
2000
).
56.
G. E.
Scuseria
,
J. Chem. Phys.
94
,
442
(
1991
).
57.
O.
Hübner
and
J.
Sauer
,
Chem. Phys. Lett.
358
,
442
(
2002
).
58.
T.
van Mourik
and
R.
Gdanitz
,
J. Chem. Phys.
116
,
9620
(
2002
).
59.
Y. K.
Zhang
,
W.
Pan
, and
W.
Yang
,
J. Chem. Phys.
107
,
7921
(
1997
).
60.
J.
Tao
and
J. P.
Perdew
,
J. Chem. Phys.
122
,
114102
(
2005
).
61.
E.
Czuchai
,
M.
Krośnicki
, and
H.
Stoll
,
Theor. Chem. Acc.
110
,
28
(
2003
).
62.
B.
Wang
and
Z.
Chen
,
Chem. Phys. Lett.
387
,
395
(
2004
).
63.
M.
Yu
and
M.
Dolg
,
Chem. Phys. Lett.
273
,
329
(
1997
).
64.
S. P.
Walch
and
C. W.
Bauschlicher
, Jr.
,
J. Chem. Phys.
78
,
4597
(
1983
).
65.
R.
Merkle
,
A.
Savin
, and
H.
Preuss
,
J. Chem. Phys.
97
,
9216
(
1992
).
66.
M.
Grüning
,
O. V.
Gritsenko
,
S. J.A.
van Gisberger
, and
E. J.
Baerends
,
J. Phys. Chem. A
105
,
9211
(
2001
).
67.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
56
,
16021
(
1997
).
68.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
(
1998
).
69.
T.
Bally
and
G. N.
Sastry
,
J. Phys. Chem. A
101
,
7923
(
1997
).
70.
M.
Lundberg
and
P. E.M.
Siegbahn
,
J. Chem. Phys.
122
,
224103
(
2005
).
71.
72.
J. F.
Harrison
,
Chem. Rev. (Washington, D.C.)
100
,
679
(
2000
).
73.
K. A.
Gingerich
,
J. Chem. Phys.
49
,
19
(
1968
).
74.
C. W.
Bauschlicher
, Jr.
and
P.
Maitre
,
Theor. Chim. Acta
90
,
189
(
1995
).
75.
G. L.
Gutsev
,
L.
Andrews
, and
C. W.
Bauschlicher
, Jr.
,
Theor. Chem. Acc.
109
,
298
(
2003
).
76.
A. J.
Merer
,
Annu. Rev. Phys. Chem.
40
,
407
(
1989
).
77.
M.
Bencheikh
,
R.
Koivisto
,
O.
Launila
, and
J. P.
Flament
,
J. Chem. Phys.
106
,
6231
(
1996
).
78.
C. W.
Bauschlicher
, Jr.
,
Chem. Phys.
211
,
163
(
1996
).
79.
C.
van Wüllen
,
J. Chem. Phys.
109
,
392
(
1998
).
80.
J.
Sauer
and
J.
Döbler
,
J. Chem. Soc. Dalton Trans.
2004
,
3116
.
81.
M.
Torrent
,
P.
Gili
,
M.
Duran
, and
M.
Solà
,
J. Chem. Phys.
104
,
9499
(
1996
).
82.
M.
Filatov
and
W.
Thiel
,
Phys. Rev. A
57
,
189
(
1998
).
83.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
84.
V. G.
Solomonik
and
O. Y.
Marochko
,
J. Struct. Chem.
41
,
725
(
2001
).
85.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
86.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
87.
N. I.
Giricheva
,
E. Z.
Zasorin
,
G. V.
Girichev
,
K. S.
Krasnov
, and
V. P.
Spiridonov
,
Zh. Strukt. Khim.
17
,
797
(
1976
).
88.
M.
Hargittai
,
N. Y.
Subbotina
,
M.
Kolonits
, and
A. G.
Gershikov
,
J. Chem. Phys.
94
,
7252
(
1991
).
89.
S. G.
Wang
and
W. H.E.
Schwarz
,
J. Chem. Phys.
109
,
7252
(
1998
).
90.
N.
Schiefenhövel
,
M.
Binnewies
,
F.
Janetzko
, and
K.
Jug
,
Z. Anorg. Allg. Chem.
627
,
1513
(
2001
).
91.
E. R.
Davidson
,
K. L.
Kunze
,
F. B.C.
Machado
, and
S. J.
Chkravorty
,
Acc. Chem. Res.
26
,
628
(
1993
).
92.
B. J.
Persson
and
P. R.
Taylor
,
Theor. Chem. Acc.
110
,
211
(
2003
).
93.
V.
Jonas
and
W.
Thiel
,
J. Chem. Phys.
102
,
8474
(
1995
).
94.
G. L.
Gutsev
and
C. W.
Bauschlicher
, Jr.
,
J. Chem. Phys.
119
,
3681
(
2003
).
95.
L. S.
Sunderlin
,
D.
Wang
, and
R.
Squires
,
J. Am. Chem. Soc.
114
,
2788
(
1992
).
96.
P. C.
Engelking
and
W. C.
Lineberger
,
J. Am. Chem. Soc.
101
,
5569
(
1979
).
97.
C.
Elschenbroich
and
A.
Salzer
,
Organometallics
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
1992
).
98.
A.
Mateev
,
M.
Staufer
,
M.
Mayer
, and
N.
Rösch
,
Int. J. Quantum Chem.
75
,
863
(
1999
).
99.
O.
González-Blanco
and
V.
Branchadell
,
J. Chem. Phys.
110
,
778
(
1999
).
100.
A.
Rosa
,
A. W.
Ehlers
,
E. J.
Baerends
,
J. G.
Snijders
, and
G.
te Velde
,
J. Phys. Chem.
100
,
5690
(
1996
).
101.
J. P.
Kenny
,
R. B.
King
, and
H. F.
Schaefer
 III
,
Inorg. Chem.
40
,
900
(
2001
).
102.
V. M.
Rayón
and
G.
Frenking
,
Organometallics
22
,
3304
(
2003
).
103.
Z.-F.
Xu
,
Y.
Xie
,
W.-L.
Feng
, and
H. F.
Schaefer
 III
,
J. Phys. Chem. A
107
,
2716
(
2003
).
104.
J. E.
Sansonetti
and
W. C.
Martin
,
Handbook of Basic Atomic Spectrosopic Data
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2005
);
Handbook of Basic Atomic Spectrosopic Data
, web ed., edited by
S. L.
Young
(http://physics.nist.gov/PhysRefData/Handbook/)
105.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
6505
(
1996
).
106.
T. D.
Varberg
,
E. J.
Hill
, and
R. W.
Field
,
J. Mol. Spectrosc.
138
,
630
(
1989
).
107.
J. E.
Peralta
and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
5875
(
2004
).
108.
T. R.
Cundari
,
H. A.R.
Leza
,
T.
Grimes
,
G.
Steyl
,
A.
Waters
, and
A. K.
Wilson
,
Chem. Phys. Lett.
401
,
58
(
2005
).
109.
N. E.
Schultz
,
Y.
Zhao
, and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
4388
(
2005
).
110.
See EPAPS Document No. E-JCPSA6-124-301603 for the QZVP/TPSS optimized structures as well as point-group symmetries and orbital occupation numbers used. This document can be reached via a direct link in the online article’s HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html).
111.
R.
Fournier
and
L.
Boroukhovskaia
,
Theor. Chem. Acc.
112
,
1
(
2004
).
112.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
113.
M.
Levy
(unpublished).
114.
K.
Raghavachari
and
G. W.
Trucks
,
J. Chem. Phys.
91
,
1062
(
1989
).
115.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH
,
Weinheim
,
2000
).
116.
117.
T. V.
Russo
,
R. L.
Martin
, and
P. J.
Hay
,
J. Chem. Phys.
101
,
7729
(
1994
).
118.
J. G.
Harrison
,
J. Chem. Phys.
79
,
2265
(
1983
).
119.
T.
Ziegler
,
A.
Rauk
, and
E. J.
Baerends
,
Theor. Chim. Acta
43
,
261
(
1997
).
120.
E. J.
Baerends
,
V.
Branchadell
, and
M.
Sodupe
,
Chem. Phys. Lett.
265
,
481
(
1997
).
121.
J.
Tao
and
J. P.
Perdew
,
Phys. Rev. Lett.
95
,
196403
(
2005
).
122.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
31
,
6264
(
1985
).
123.
F. W.
Kutzler
and
G. S.
Painter
,
Phys. Rev. B
43
,
6865
(
1991
).
124.
T. V.
Russo
,
R. L.
Martin
, and
J.
Hay
,
J. Chem. Phys.
102
,
8023
(
1995
).
125.
S.
Kurth
,
J. P.
Perdew
, and
P.
Blaha
,
Int. J. Quantum Chem.
75
,
889
(
1999
).
126.
H.-T.
Jeng
and
C.-S.
Hsue
,
Phys. Rev. B
62
,
9876
(
2000
).
127.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
,
Molecular Spectra and Molecular Structure
Vol.
IV
(
Van Nostrand Reinhold
,
New York
,
1979
).
128.
F.
Schautz
,
H.-J.
Flad
, and
M.
Dolg
,
Theor. Chem. Acc.
4
,
231
(
1998
).
129.
C. H.
Su
,
P. K.
Liao
,
Y.
Hunang
,
S. S.
Liou
, and
R. F.
Brebrick
,
J. Chem. Phys.
81
,
11
(
1984
).
130.
M. A.
Czajkowski
and
J.
Koperski
,
Spectrochim. Acta, Part A
55
,
2221
(
1999
).
131.
K. D.
Carlson
and
K. R.
Kuschnir
,
J. Phys. Chem.
68
,
1566
(
1964
).
132.
S.
Ceccherini
and
M.
Moraldi
,
Chem. Phys. Lett.
337
,
386
(
2001
).
133.
A.
Givan
and
A.
Loewenschuss
,
Chem. Phys. Lett.
62
,
592
(
1979
).
134.
W. C.
Stwalley
,
W. T.
Zemke
, and
S. C.
Yang
,
J. Phys. Chem. Ref. Data
20
,
153
(
1991
).
135.
N.
Andersson
,
W. J.
Balfour
,
P. F.
Bernath
,
B.
Lindgren
, and
R. S.
Ram
,
J. Chem. Phys.
118
,
3543
(
2003
).
136.
G. V.
Chertihin
and
L.
Andrews
,
J. Am. Chem. Soc.
116
,
8322
(
1994
).
137.
P. M.
Sheridan
,
S. K.
McLamarrah
, and
L. M.
Ziurys
,
J. Chem. Phys.
119
,
9496
(
2003
).
138.
J. A.
Martinho Simões
, in
NIST Chemistry WebBook
,
NIST Standard Reference Database No. 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2003
);
139.
H. Y.
Afeefy
,
J. F.
Liebman
, and
S. E.
Stein
, in
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2003
);
140.
K. E.
Lewis
,
D. M.
Golden
, and
G. P.
Smith
,
J. Am. Chem. Soc.
106
,
3905
(
1984
).
141.
A.
Jost
,
B.
Rees
, and
W. B.
Yelon
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
31
,
2649
(
1975
).
142.
P. C.
Leung
and
P.
Coppens
,
Acta Crystallogr., Sect. B: Struct. Sci.
39
,
535
(
1983
).
143.
Y.
Li
and
T.
Baer
,
J. Phys. Chem. A
106
,
9820
(
2002
).
144.
M. F.
Ryan
,
J. R.
Eyler
, and
D. E.
Richardson
,
J. Am. Chem. Soc.
114
,
8611
(
1992
).

Supplementary Material

You do not currently have access to this content.