We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high (nearly 100%) success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures (stable phases: ε-oxygen, new phase of sulphur, new metastable phases of carbon, sulphur and nitrogen, stable and metastable phases of CaCO3). Physical reasons for the success of this methodology are discussed.

1.
J.
Maddox
,
Nature (London)
335
,
201
(
1988
).
2.
G. M.
Day
,
W. D.S.
Motherwell
,
H. L.
Ammon
 et al,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B61
,
511
(
2005
).
3.
R.
Martoňák
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
90
,
075503
(
2003
).
4.
R.
Martoňák
,
A.
Laio
,
M.
Bernasconi
,
C.
Ceriani
,
P.
Raiteri
,
F.
Zipoli
, and
M.
Parrinello
,
Z. Kristallogr.
220
,
489
(
2005
).
5.
J.
Pannetier
,
J.
Bassasalsina
,
J.
Rodriguez-Carvajal
, and
V.
Caignaert
,
Nature (London)
346
,
343
(
1990
).
6.
J. C.
Schön
and
M.
Jansen
,
Angew. Chem., Int. Ed. Engl.
35
,
1287
(
1996
).
7.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
8.
S.
Gödecker
,
J. Chem. Phys.
120
,
9911
(
2004
).
9.
T. S.
Bush
,
C. R. A.
Catlow
, and
P. D.
Battle
,
J. Mater. Chem.
5
,
1269
(
1995
).
10.
S. M.
Woodley
,
P. D.
Battle
,
J. D.
Gale
, and
C. R. A.
Catlow
,
Phys. Chem. Chem. Phys.
1
,
2535
(
1999
).
11.
S. M.
Woodley
,
Struct. Bonding (Berlin)
110
,
95
(
2004
).
12.
D. M.
Deaven
and
K. M.
Ho
,
Phys. Rev. Lett.
75
,
288
(
1995
).
13.
For example,
H.
Cynn
,
D. G.
Isaak
,
R. E.
Cohen
,
M. F.
Nicol
, and
O. L.
Anderson
,
Am. Mineral.
75
,
439
(
1990
) found that at high pressures Al2O3 will be more stable in the Rh2O3(II) structure than in the corundum structure; this prediction was verified experimentally in Ref. 14. Motivated by the finding of a CaIrO3-type postperovskite phase of Fe2O3 (Ref. 15), ab initio simulations suggested the high-pressure stability of CaIrO3-type phases in MgSiO3 (Ref. 16) and Al2O3 (Refs. 17 and 18) above 1Mbar. Both predictions are consistent with experiment (Refs. 16, 17, and 19).
14.
N.
Funamori
and
R.
Jeanloz
,
Science
278
,
1109
(
1997
).
15.
S.
Ono
,
T.
Kikegawa
, and
Y.
Ohishi
,
J. Phys. Chem. Solids
65
,
1527
(
2004
).
16.
A. R.
Oganov
and
S.
Ono
,
Nature (London)
430
,
445
(
2004
).
17.
A. R.
Oganov
and
S.
Ono
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10828
(
2005
).
18.
R.
Caracas
and
R. E.
Cohen
,
Geophys. Res. Lett.
32
,
L06303
(
2005
).
19.
M.
Murakami
,
K.
Hirose
,
K.
Kawamura
,
N.
Sata
, and
Y.
Ohishi
,
Science
304
,
855
(
2004
).
20.
For example, early simulations of Al2O3 under pressure [
K. T.
Thomson
,
R. M.
Wentzcovitch
, and
M. S. T.
Bukowinski
,
Science
274
,
1880
(
1996
)] did not consider the CaIrO3-type structure and incorrectly predicted stability of the perovskite structure above 2Mbars. In reality, this structure is never stable, because of the greater stability of the CaIrO3 structure (Refs. 13, 17, and 18).
21.

Although an exhaustive search for all metastable structures is hardly possible.

22.
A. R.
Oganov
,
R.
Martoňák
,
A.
Laio
,
P.
Raiteri
, and
M.
Parrinello
,
Nature (London)
438
,
1142
(
2005
).
23.
Z.
Michalewicz
and
D. B.
Fogel
,
How to Solve It: Modern Heuristics
(
Springer
,
Berlin
,
2004
).
24.
H. M.
Cartwright
,
Struct. Bonding (Berlin)
110
,
1
(
2004
).
25.

Usually called “genetic crossover” or “two-parent variation operator.”

26.

Like the method of Deaven and Ho (Ref. 12), our evolutionary algorithm involves the local optimization of each generated structure and a real-space representation of the atomic positions. Note that the method of Ref. 12 was developed specifically for molecules and has never been adapted or applied to the prediction of structures of crystals.

27.
C. W.
Glass
,
A. R.
Oganov
, and
N.
Hansen
, (unpublished)
28.

The hard constraints are the minimum acceptable interatomic distance, the minimum value of a lattice parameter, and the minimum and maximum cell angles. The minimum interatomic distance is usually set to values about 0.7Å, to exclude unphysical starting structures and problems with large pseudopotential core overlaps. The minimum length of a lattice parameter is usually set to less than the diameter of the largest atom under pressure, and the cell angles are allowed to take values between 60° and 120° (according to a well-known crystallographic theorem, cells with all other angles can always be transformed to cells with angles between 60° and 120° and having shorter cell vectors). These options can also be used to restrict the search space if any information about the cell shape is available (e.g., that the cell is cubic, hexagonal, etc.).

29.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
30.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garcia
,
J.
Junquera
,
P.
Ordejon
, and
D.
Sanchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
31.
J. D.
Gale
,
Z. Kristallogr.
220
,
552
(
2005
).
32.
Finite-temperature free energy calculations are currently very expensive within the ab initio framework. At the same time, with atomistic potentials free energy calculations are easily affordable. For ab initio free energy calculations, two strategies can be employed. One is the quasiharmonic approximation using phonon spectra calculated from density functional perturbation theory;
for a review see
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Gianozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
);and for applications see Refs. 16 and 17 and
A. R.
Oganov
,
M. J.
Gillan
, and
G. D.
Price
,
J. Chem. Phys.
118
,
10174
(
2003
);
J.
Tsuchiya
,
J.
Tshchiya
,
K.
Umemoto
, and
R. M.
Wentzcovitch
,
Earth Planet. Sci. Lett.
22
,
241
(
2004
);
A. R.
Oganov
,
M. J.
Gillan
, and
G. D.
Price
,
Phys. Rev. B
71
,
064104
(
2005
) Another strategy is based on thermodynamic integration techniques;
for a review see
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation. From Algorithms to Applications
(
Academic
,
San Diego
,
2002
);
used, e.g., in
D.
Alfé
,
M. J.
Gillan
, and
G. D.
Price
,
Nature (London)
401
,
462
(
1999
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
35.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
36.

List of initial applications (as of December 2005) includes: hydrogen at 200 and 600GPa (2, 3, 4, 6, 8, 12, and 16at./cell), carbon (at fixed cell parameters of diamond and with variable cell at 0, 100, 300, 500, 1000, and 2000GPa and with 8at./cell), silicon (10, 14, and 20GPa with 8at./cell), xenon (at 200 and 1000GPa, 8at./cell), nitrogen at 100GPa (with 6, 8, 12, and 16at./cell) and at 250GPa (with 8at./cell), oxygen (at experimental cell parameters of the ε and ξ phases, and with variable cell at 25, 130, and 250GPa using 4, 6, 8, 12, 16at./cell), iron at 350GPa (8at./cell), sulphur at 12GPa (with 3, 4, 6, 8, 9, and 12at./cell) chlorine at 100GPa (8at./cell), fluorine (50 and 100GPa, 8at./cell), SiO2 at 0GPa (9at./cell), H2O at 0GPa(12at./cell), CO2 at 50GPa (3, 6, 9, 12, 18, and 24at./cell), TiO2 (at experimental cell parameters of anatase, 12at./cell), Al2O3 at 300GPa(20at./cell), Si2N2O at 0GPa(10at./cell), SrSiN2 at 0GPa(16at./cell), urea (NH2)2CO at experimental cell parameters (16at./cell), MgSiO3 with 20at./cell (at experimental cell parameters of postperovskite, and with variable cell at 80 and 120GPa) and 40 at/cell (at experimental cell parameters of postperovskite) MgCO3 at 150GPa (5, 10, and 20at./cell), CaCO3 (at 50, 80, and 150GPa with 5, 10, and 20at./cell; also at experimental cell parameters of postaragonite, 10at./cell).

37.
J. S.
Kasper
and
S. M.
Richards
,
Acta Crystallogr.
17
,
752
(
1964
).
38.
S.
Fahy
and
S. G.
Louie
,
Phys. Rev. B
36
,
3373
(
1987
).
39.
S. J.
Clark
,
G. J.
Ackland
, and
J.
Crain
,
Phys. Rev. B
52
,
15035
(
1995
).
40.
W. A.
Crichton
,
G. B. M.
Vaughan
, and
M.
Mezouar
,
Z. Kristallogr.
216
,
417
(
2001
).
41.
G. C.
Vezzoli
,
F.
Dachille
, and
R.
Roy
,
Science
166
,
218
(
1969
).
42.
H.
Fujihisa
,
Y.
Akahama
,
H.
Kawamura
,
H.
Yamawaki
,
M.
Sakashita
,
T.
Yamada
,
K.
Honda
, and
T.
Le Bihan
,
Phys. Rev. B
70
,
134106
(
2004
).
43.
C.
Hejny
,
L. F.
Lundegaard
,
S.
Falconi
,
M. I.
McMahon
, and
M.
Hanfland
,
Phys. Rev. B
71
,
020101
(
2005
).
44.
O.
Degtyareva
,
E.
Gregoryanz
,
H. K.
Mao
, and
R. J.
Hemley
,
High Press. Res.
25
,
17
(
2005
);
O.
Degtyareva
,
E.
Gregoryanz
,
M.
Somayazulu
,
P.
Dera
,
H. K.
Mao
, and
R. J.
Hemley
,
Nat. Mater.
4
,
152
(
2005
).
[PubMed]
45.
L.
Crapanzano
,
W. A.
Crichton
,
G.
Monaco
,
R.
Bellissent
, and
M.
Mezouar
,
Nat. Mater.
4
,
550
(
2005
).
46.
E.
Wigner
and
H. B.
Huntington
,
J. Chem. Phys.
3
,
764
(
1935
).
47.
C.
Narayana
,
H.
Luo
,
J.
Orloff
, and
A. L.
Ruoff
,
Nature (London)
393
,
46
(
1998
).
48.
P.
Loubeyre
,
F.
Occelli
, and
R.
LeToullec
,
Nature (London)
416
,
613
(
2002
).
49.
W. B.
Holzapfel
,
Rep. Prog. Phys.
59
,
29
(
1996
).
50.
A. F.
Goncharov
,
E.
Gregoryanz
,
R. J.
Hemley
, and
H. K.
Mao
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
14234
(
2001
).
51.
I.
Goncharenko
and
P.
Loubeyre
,
Nature (London)
435
,
1206
(
2005
).
52.
R. J.
Hemley
and
P.
Dera
, in
Reviews in Mineralogy and Geochemistry
, edited by
R. M.
Hazen
and
R. T.
Downs
(
Mineralogical Society of America
,
Washington, D. C.
,
2000
), Vol.
41
, pp.
335
419
.
53.
C.
Mailhiot
,
L. H.
Yang
, and
A. K.
McMillan
,
Phys. Rev. B
46
,
14419
(
1992
).
54.
M. I.
Eremets
,
A. G.
Gavriliuk
,
I. A.
Trojan
,
D. A.
Dzivenko
, and
R.
Boehler
,
Nat. Mater.
3
,
558
(
2004
).
55.
E.
Gregoryanz
,
A. F.
Goncharov
,
R. J.
Hemley
,
H. K.
Mao
,
M.
Somayazulu
, and
G. Y.
Shen
,
Phys. Rev. B
66
,
224108
(
2002
).
56.
M.
Nicol
,
K. R
Hirsch
, and
W. B.
Holzapfel
,
Chem. Phys. Lett.
68
,
49
(
1979
).
57.
Y.
Akahama
,
H.
Kawamura
,
D.
Hausermann
,
M.
Hanfland
, and
O.
Shimomura
,
Phys. Rev. Lett.
74
,
4690
(
1995
).
58.
K.
Shimizu
,
K.
Suhara
,
M.
Ikumo
,
K.
Amaya
, and
S.
Endo
,
Nature (London)
393
,
767
(
1998
).
59.
I. N.
Goncharenko
,
Phys. Rev. Lett.
94
,
205701
(
2005
).
60.
J. B.
Neaton
and
N. W.
Ashcroft
,
Phys. Rev. Lett.
88
,
205503
(
2002
).
61.
F. A.
Gorelli
,
L.
Ulivi
,
M.
Santoro
, and
R.
Bini
,
Phys. Rev. Lett.
83
,
4093
(
1999
).
62.
L.
Vocadlo
,
J.
Brodholt
,
D.
Alfe
,
M. J.
Gillan
, and
G. D.
Price
,
Geophys. Res. Lett.
26
,
1231
(
1999
).
63.
A. B.
Belonoshko
,
R.
Ahuja
, and
B.
Johansson
,
Nature (London)
424
,
1032
(
2003
).
64.
L.
Vocadlo
,
D.
Alfe
,
M. J.
Gillan
,
I. G.
Wood
,
J. P.
Brodholt
, and
G. D.
Price
,
Nature (London)
424
,
536
(
2003
).
65.
K. A.
Goettel
,
J. H.
Eggert
,
I. F.
Silvera
, and
W. C.
Moss
,
Phys. Rev. Lett.
62
,
665
(
1989
).
66.
M. I.
Eremets
,
E. A.
Gregoryanz
,
V. V.
Struzhkin
,
H. K.
Mao
,
R. J.
Hemley
,
N.
Mulders
, and
N. M.
Zimmerman
,
Phys. Rev. Lett.
85
,
2797
(
2000
).
67.
S. T.
Weir
,
A. C.
Mitchell
, and
W. J.
Nellis
,
J. Appl. Phys.
80
,
1522
(
1996
).
68.
J.
Hama
and
K.
Suito
,
High Temp. - High Press.
34
,
323
(
2002
).
69.
K.
Umemoto
,
R. M.
Wentzcovitch
, and
P. B.
Allen
,
Science
311
,
983
(
2006
).
70.

Because in shock compression temperature increases very quickly with pressure.

71.
A. R.
Oganov
,
C. W.
Glass
, and
S.
Ono
,
Earth Planet. Sci. Lett.
241
,
95
(
2006
).
72.
S.
Ono
,
T.
Kikegawa
,
Y.
Ohishi
, and
J.
Tsuchiya
,
Am. Mineral.
90
,
667
(
2005
).
73.
S.
Ono
,
M.
Shirasaka
,
T.
Kikegawa
, and
Y.
Ohishi
,
Phys. Chem. Miner.
32
,
8
(
2005
).
74.

The simulation went through many structures that contained other molecules, e.g., H2O, NH3, N2, H2, and NC(NH)2CO among other molecules and radicals. All the generated structures were molecular, but the most favorable structures contained only the (NH2)2CO urea molecules. Different packings of urea molecules were identified, the most stable one corresponds to the tetragonal structure of urea (Fig. 11) experimentally known to be stable at ambient conditions.

75.
G. H.
Jóhannesson
,
T.
Bligaard
,
A. V.
Ruban
,
H. L.
Skriver
,
K. W.
Jacobsen
, and
J. K.
Nørskov
,
Phys. Rev. Lett.
88
,
255506
(
2002
).
76.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
77.
J. M.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
78.
M.
Fuchs
and
X.
Gonze
,
Phys. Rev. B
65
,
235109
(
2002
).
79.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
,
Phys. Rev. B
52
,
R5467
(
1995
).
80.
P.
Strange
,
A.
Svane
,
W. M.
Temmerman
,
Z.
Szotek
, and
H.
Winter
,
Nature (London)
399
,
756
(
1999
).
81.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
,
Rev. Mod. Phys.
68
,
13
(
1996
).
82.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
83.
M.
Valle
,
Z. Kristallogr.
220
,
585
(
2005
).
84.
S.
Ono
(private communication).
You do not currently have access to this content.