High-resolution photofragment translational spectroscopy is used in this work to measure the translational and internal energy distributions in the CD3 and iodine fragments produced from the photodissociation of CD3I at 266 and 304nm. Channel selected detection, via resonantly enhanced multiphoton ionization, combined with one-dimensional core sampling provides detailed information about vibrational state distributions of the CD3 fragments. The vibrational state distributions of CD3 fragments in the I*(P122) channel have a propensity of ν2 umbrella bending mode with a maximum at ν2=1 for 266nm photodissociation. For I*(P122) channel at 304nm photodissociation, vibrational state distributions of CD3 fragment have a maximum in the vibrational ground state. For the I(P322) channel (Q11Q0+3), ν2 umbrella bending vibrational distribution is measured as the predominant vibrational mode but has a much broader distribution when compared to that of the I* channel. The vibrational state distributions of the CD3 fragment produced from the perpendicular transition, i.e., Q13, which was determined at 304nm photodissociation, has a maximum at ν2=1. The curve crossing possibility between the Q11 and Q0+3 adiabatic potentials is determined as 0.19 for 266 and 0.85 for 304nm. The trend in reaction dynamics in 266 and 304nm photodissociation of CD3I is compared with theoretical calculations. A bond dissociation energy D0(CI)=56.60±0.5kcalmol was derived by applying laws of energy conservation.

1.
S. J.
Riley
and
K. R.
Wilson
,
Faraday Discuss. Chem. Soc.
53
,
132
(
1972
).
2.
R. K.
Sparks
,
K.
Shobatake
,
L. R.
Carlson
, and
Y. T.
Lee
,
J. Chem. Phys.
75
,
3838
(
1981
).
3.
H. W.
Hermann
and
S. R.
Leone
,
J. Chem. Phys.
76
,
4766
(
1982
).
4.
M. D.
Barry
and
P. A.
Gorry
,
Mol. Phys.
52
,
461
(
1984
).
5.
R.
Loo
,
H.-P.
Haerri
,
G. E.
Hall
, and
P. L.
Houston
,
J. Chem. Phys.
90
,
4222
(
1989
).
6.
D. W.
Chandler
,
J. W.
Thoman
 Jr.
,
M. H. M.
Janssen
, and
D. H.
Parker
,
Chem. Phys. Lett.
156
,
151
(
1989
).
7.
R. L.
Sundberg
,
D.
Imre
,
M. O.
Hale
,
J. L.
Kinsey
, and
R. D.
Coalson
,
J. Phys. Chem.
90
,
5001
(
1986
).
8.
I.
Powis
and
J. F.
Black
,
J. Phys. Chem.
93
,
2461
(
1989
).
9.
R. B.
Hertz
and
J. A.
Syage
,
J. Chem. Phys.
100
,
9265
(
1994
).
10.
A. T. J. B.
Eppink
and
D. H.
Parker
,
J. Chem. Phys.
110
,
832
(
1999
).
11.
G.
Li
,
H. J.
Hwang
, and
H. C.
Jung
,
Rev. Sci. Instrum.
76
,
023105
(
2005
).
12.
G.
Li
,
Y. K.
Shin
, and
H. J.
Hwang
,
J. Phys. Chem. A
109
,
9226
(
2005
).
13.
M.
Shapiro
and
R.
Bersohn
,
J. Chem. Phys.
73
,
3810
(
1980
).
14.
S. Y.
Lee
and
E. J.
Heller
,
J. Chem. Phys.
76
,
3035
(
1982
).
15.
B. R.
Johnson
,
J. L.
Kinsey
, and
M.
Shapiro
,
J. Chem. Phys.
88
,
3147
(
1988
).
16.
S.
Yabushita
and
K.
Morokuma
,
Chem. Phys. Lett.
153
,
517
(
1988
).
17.
H.
Guo
and
G. C.
Schatz
,
J. Chem. Phys.
93
,
393
(
1990
).
18.
Y.
Amatatsu
,
K.
Morokuma
, and
S.
Yabushita
,
J. Chem. Phys.
94
,
4858
(
1991
).
19.
H.
Guo
,
K.
Lao
,
G. C.
Schatz
, and
A. D.
Hammerich
,
J. Chem. Phys.
94
,
6562
(
1991
).
20.
C.
Rist
and
M. H.
Alexander
,
J. Chem. Phys.
98
,
6196
(
1992
).
21.
R.
Schinke
,
Photodissociation Dynamics
(
Cambridge University Press
,
Cambridge, England
,
1993
).
22.
A. D.
Hammerich
,
U.
Manthe
,
R.
Kosloff
,
H.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
101
,
5623
(
1994
).
23.
Y.
Amatatsu
,
S.
Yabushita
, and
K.
Morokuma
,
J. Chem. Phys.
104
,
9783
(
1996
).
24.
D.
Xie
,
H.
Guo
,
Y.
Amatatsu
, and
R.
Kosloff
,
J. Phys. Chem. A
104
,
1009
(
2000
).
25.
M.
Zhao
,
Q.
Meng
,
T.
Xie
,
K.
Han
, and
G.
He
,
Int. J. Quantum Chem.
101
,
153
(
2005
).
26.
G. N. A.
Van Veen
,
T.
Baller
, and
A. E.
Devries
,
Chem. Phys.
87
,
405
(
1984
).
27.
R. S.
Mulliken
,
J. Chem. Phys.
8
,
382
(
1940
).
28.
L. C.
Pipes
,
D. Y.
Kim
,
N.
Brandstater
,
C. D.
Fugelsnag
, and
D.
Baugh
,
Chem. Phys. Lett.
219
,
204
(
1994
).
29.
D. Y.
Kim
,
N.
Brandstater
,
L. C.
Pipes
,
T.
Garner
, and
D.
Baugh
,
J. Phys. Chem.
99
,
4364
(
1995
).
30.
G. E.
Hall
,
T. J.
Sears
, and
J. M.
Frye
,
J. Chem. Phys.
90
,
6234
(
1989
).
31.
D. W.
Chandler
,
M. H. M.
Janssen
,
S.
Stolte
,
R. N.
Strickland
, and
D. H.
Parker
,
J. Phys. Chem.
94
,
4839
(
1990
).
32.
T. J.
Sears
,
J. M.
Frye
,
V.
Spirko
, and
W. P.
Kraemer
,
J. Chem. Phys.
90
,
2125
(
1989
).
33.

The zero-point vibrational energies of CH3I and CD3I were calculated from the fundamental vibrational energies of normal modes in Refs. 23 and 39.

34.
D. L.
Osborn
,
D. J.
Leahy
, and
D. M.
Neumark
,
J. Phys. Chem. A
101
,
6583
(
1997
).
35.
F. G.
Godwin
,
C.
Paterson
, and
P. A.
Gorry
,
Mol. Phys.
61
,
827
(
1987
).
36.
M. D.
Person
,
P. W.
Kash
, and
L. J.
Butler
,
J. Chem. Phys.
94
,
2557
(
1990
).
37.
H.
Guo
,
J. Chem. Phys.
96
,
6629
(
1992
).
38.
H.
Guo
,
J. Chem. Phys.
96
,
2731
(
1992
).
39.
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies
(
U.S. GPO
,
Washington, DC
,
1972
), Vol.
1
.
You do not currently have access to this content.