The question as to whether state-selective population of molecular vibrational levels by shaped infrared laser pulses is possible in a condensed phase environment is of central importance for such diverse fields as time-resolved spectroscopy, quantum computing, or “vibrationally mediated chemistry.” This question is addressed here for a model system, representing carbon monoxide adsorbed on a Cu(100) surface. Three of the six vibrational modes are considered explicitly, namely, the CO stretch vibration, the CO-surface vibration, and a frustrated translation. Optimized infrared pulses for state-selective excitation of “bright” and “dark” vibrational levels are designed by optimal control theory in the framework of a Markovian open-system density matrix approach, with energy flow to substrate electrons and phonons, phase relaxation, and finite temperature accounted for. The pulses are analyzed by their Husimi “quasiprobability” distribution in time-energy space.

1.
U.
Höfer
,
I. L.
Shumay
,
Ch.
Reuß
,
U.
Thomann
,
W.
Wallauer
, and
Th.
Fauster
,
Science
277
,
1480
(
1997
);
M.
Bauer
,
S.
Pawlik
, and
M.
Aeschlimann
,
Phys. Rev. B
55
,
10040
(
1997
);
N.-H.
Ge
,
C. M.
Wong
,
R. L.
Lingle
,Jr.
,
J. D.
McNeill
,
K. J.
Gaffney
, and
C. B.
Harris
,
Science
279
,
202
(
1998
);
[PubMed]
M.
Bonn
,
S.
Funk
,
C.
Hess
,
D. N.
Denzler
,
C.
Stampfl
,
M.
Scheffler
,
M.
Wolf
, and
G.
Ertl
,
Science
285
,
1042
(
1999
);
[PubMed]
H.
Petek
,
M. J.
Weida
,
H.
Nagano
, and
S.
Ogawa
,
Science
288
,
1402
(
2000
).
[PubMed]
2.
V. S.
Letokhov
,
Science
180
,
451
(
1973
);
[PubMed]
F. F.
Crim
,
Science
249
,
1387
(
1990
);
[PubMed]
M.
Shapiro
and
P.
Brumer
,
J. Chem. Phys.
98
,
201
(
1993
).
3.
P.
Saalfrank
,
S.
Holloway
, and
G. R.
Darling
,
J. Chem. Phys.
103
,
6720
(
1995
).
4.
P.
Saalfrank
and
T.
Klamroth
,
Ber. Bunsenges. Phys. Chem.
99
,
1347
(
1995
).
5.
P.
Saalfrank
and
R.
Kosloff
,
J. Chem. Phys.
105
,
2441
(
1996
).
6.
G.
Boendgen
and
P.
Saalfrank
,
J. Phys. Chem. B
102
,
8029
(
1998
).
7.
G. K.
Paramonov
and
P.
Saalfrank
,
J. Chem. Phys.
110
,
6500
(
1999
).
8.
K.
Nakagami
,
Y.
Ohtsuki
, and
Y.
Fujimura
,
Chem. Phys. Lett.
360
,
91
(
2002
).
9.
G. K.
Paramonov
and
P.
Saalfrank
,
Chem. Phys. Lett.
301
,
509
(
1999
).
10.
A.
Abe
,
K.
Yamashita
, and
P.
Saalfrank
,
Phys. Rev. B
67
,
235411
(
2003
).
11.
P.
Saalfrank
and
G. K.
Paramonov
,
J. Chem. Phys.
107
,
10723
(
1997
).
12.
P.
Guyot-Sionnest
,
P.
Dumas
,
Y. J.
Chabal
, and
G.
Higashi
,
Phys. Rev. Lett.
64
,
2156
(
1990
);
[PubMed]
Y. J.
Chabal
,
J. Mol. Struct.
292
,
65
(
1993
).
13.
Y.-Y.
Sun
,
H.
Gai
, and
G. A.
Voth
,
Chem. Phys.
205
,
11
(
1996
).
14.
K.
Laß
,
X.
Han
, and
E.
Hasselbrink
,
J. Chem. Phys.
123
,
051102
(
2005
).
15.
M.
Morin
,
N. J.
Levinos
, and
A. L.
Harris
,
J. Chem. Phys.
96
,
3950
(
1992
).
16.
C. M.
Tesch
and
R.
de Vivie–Riedle
,
Phys. Rev. Lett.
89
,
157901
(
2002
);
[PubMed]
C. M.
Tesch
,
L.
Kurtz
, and
R.
de Vivie–Riedle
,
Chem. Phys. Lett.
343
,
633
(
2001
).
17.
J. P.
Pala
and
R.
Kosloff
,
Phys. Rev. Lett.
89
,
188301
(
2002
).
18.
J. C.
Tully
,
M.
Gomez
, and
M.
Head-Gordon
,
J. Vac. Sci. Technol. A
11
,
1914
(
1993
).
19.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
);
M.
Head-Gordon
and
J. C.
Tully
,
Phys. Rev. B
46
,
1853
(
1992
).
20.
Y.
Ohtsuki
,
W.
Zhu
, and
H.
Rabitz
,
J. Chem. Phys.
110
,
9825
(
1999
).
21.
Y.
Ohtsuki
,
K.
Nakagami
,
W.
Zhu
, and
H.
Rabitz
,
Chem. Phys.
287
,
197
(
2003
).
22.
K.
Husimi
,
Prog. Phys. Math. Soc. Japan
22
,
264
(
1940
).
23.
C. J.
Hirschmugl
,
G. P.
Williams
,
F. M.
Hofmann
, and
Y. J.
Chabal
,
Phys. Rev. Lett.
65
,
480
(
1990
);
[PubMed]
F.
Hofmann
and
J. P.
Toennies
,
Chem. Rev. (Washington, D.C.)
96
,
1307
(
1996
);
A. P.
Graham
,
F.
Hofmann
,
G. P.
Williams
,
C. J.
Hirschmugl
, and
J.
Ellis
,
J. Chem. Phys.
108
,
7825
(
1998
).
24.
C.
Cattarius
and
H.-D.
Meyer
,
J. Chem. Phys.
121
,
9283
(
2004
).
25.
A.
Raab
and
H.-D.
Meyer
,
J. Chem. Phys.
112
,
10718
(
2000
).
26.
A. P.
Peirce
,
M. A.
Dahleh
, and
H.
Rabitz
,
Phys. Rev. A
37
,
4950
(
1988
);
R.
Kosloff
,
S. A.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D. J.
Tannor
,
Chem. Phys.
139
,
201
(
1989
);
S.
Shi
and
H.
Rabitz
,
J. Chem. Phys.
92
,
364
(
1990
).
27.
M.
Bonn
,
Ch.
Hess
, and
M.
Wolf
,
J. Chem. Phys.
115
,
7725
(
2001
).
28.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
29.
A.
Bahel
and
Z.
Bačić
,
J. Chem. Phys.
111
,
11164
(
1999
).
30.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
31.
K.
Hermann
,
P. S.
Bagus
, and
C. W.
Bauschlicher
, Jr.
,
Phys. Rev. B
30
,
7313
(
1984
).
32.
J. M.
Ricart
,
A.
Clotet
,
F.
Illas
, and
J.
Rubio
,
J. Chem. Phys.
100
,
1988
(
1994
).
33.
G.
Lindblad
,
Commun. Math. Phys.
48
,
119
(
1976
).
34.
T. T.
Rantala
and
A.
Rosén
,
Phys. Rev. B
34
,
837
(
1986
).
35.
B. N. J.
Persson
,
J. Phys. C
17
,
4741
(
1984
).
36.
I.
Andrianov
and
P.
Saalfrank
,
Chem. Phys. Lett.
350
,
191
(
2001
);
I.
Andrianov
and
P.
Saalfrank
,
J. Chem. Phys.
124
,
034710
(
2006
).
[PubMed]
37.
K.
Sundermann
and
R.
de Vivie–Riedle
,
J. Chem. Phys.
110
,
1896
(
1999
).
39.
A. L.
Harris
,
N. J.
Levinos
,
L.
Rothberg
,
L. H.
Dubois
,
L.
Dhar
,
S. F.
Shane
, and
M.
Morin
,
J. Electron Spectrosc. Relat. Phenom.
54/55
,
5
(
1990
).
40.
A.
Frigerio
and
V.
Gorini
,
J. Math. Phys.
17
,
123
(
1976
);
R.
Kosloff
,
M. A.
Ratner
, and
W. B.
Davis
,
J. Chem. Phys.
106
,
7036
(
1997
).
41.
T.
Mančal
,
U.
Kleinekathöfer
, and
V.
May
,
J. Chem. Phys.
117
,
636
(
2002
).
You do not currently have access to this content.