The ground and electronically excited states of cyclic N3+ are characterized at the equilibrium D3h geometry and along the Jahn-Teller distortions. Lowest excited states are derived from single excitations from the doubly degenerate highest occupied molecular orbitals (HOMOs) to the doubly degenerate lowest unoccupied molecular orbitals (LUMOs), which give rise to two exactly and two nearly degenerate states. The interaction of two degenerate states with two other states eliminates linear terms and results in a glancing rather than conical Jahn-Teller intersection. HOMO-2LUMOs excitations give rise to two regular Jahn-Teller states. Optimized structures, vertical and adiabatic excitation energies, frequencies, and ionization potential (IP) are presented. IP is estimated to be 10.595eV, in agreement with recent experiments.

1.
H. A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London, Ser. A
161
,
220
(
1937
).
2.
I. B.
Bersuker
,
Chem. Rev. (Washington, D.C.)
101
,
1067
(
2001
).
3.
V. I.
Pupyshev
,
Int. J. Quantum Chem.
104
,
157
(
2005
).
4.
D. R.
Yarkony
,
Rev. Mod. Phys.
68
,
985
(
1996
).
5.
Conical Intersections. Electronic Structure, Dynamics and Spectroscopy
, edited by
W. D.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
).
6.
H. C.
Longuet-Higgins
,
Proc. R. Soc. London, Ser. A
344
,
147
(
1975
).
7.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
8.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
9.
C. A.
Mead
,
Rev. Mod. Phys.
64
,
51
(
1992
).
10.
W. H.
Gerber
and
E.
Schumacher
,
J. Chem. Phys.
69
,
1692
(
1978
).
11.
D.
Babikov
,
B. K.
Kendrick
,
P.
Zhang
, and
K.
Morokuma
,
J. Chem. Phys.
122
,
044315
(
2005
).
12.
D.
Babikov
,
P.
Zhang
, and
K.
Morokuma
,
J. Chem. Phys.
121
,
6743
(
2004
).
13.
J.
Wasilewski
,
J. Chem. Phys.
105
,
10969
(
1996
).
14.
M.
Bittererová
,
H.
Östmark
, and
T.
Brinck
,
J. Chem. Phys.
116
,
9740
(
2002
).
15.
P.
Zhang
,
K.
Morokuma
, and
A. M.
Wodtke
,
J. Chem. Phys.
122
,
014106
(
2005
).
16.
N.
Hansen
and
A. M.
Wodtke
,
J. Phys. Chem. A
107
,
10608
(
2003
).
17.
N.
Hansen
,
A. M.
Wodtke
,
S. J.
Goncher
,
J. C.
Robinson
,
N. E.
Sveum
, and
D. M.
Neumark
,
J. Chem. Phys.
123
,
104305
(
2005
).
18.
P. C.
Samartzis
,
J. J. M.
Lin
,
T. T.
Ching
,
C.
Chaudhuri
,
Y. T.
Lee
,
S. H.
Lee
, and
A. M.
Wodtke
,
J. Chem. Phys.
123
,
051101
(
2005
).
19.
R.
Tarroni
and
P.
Tosi
,
Chem. Phys. Lett.
389
,
274
(
2004
).
20.
M.
Goeppert-Mayer
and
A. L.
Sclar
,
J. Chem. Phys.
6
,
645
(
1938
).
21.
J. M. O.
Matos
,
B. O.
Roos
, and
P.-A.
Malmqvist
,
J. Chem. Phys.
86
,
1458
(
1987
).
22.
T.
Hashimoto
,
H.
Nakano
, and
K.
Hirao
,
J. Mol. Struct.: THEOCHEM
451
,
25
(
1998
).
23.
M. H.
Perrin
and
M.
Gouterman
,
J. Chem. Phys.
46
,
1019
(
1966
).
24.
R.
Meiswinkel
and
H.
Köppel
,
Chem. Phys.
144
,
117
(
1990
).
25.
D. R.
Yarkony
,
J. Chem. Phys.
111
,
4906
(
1999
).
26.
J. W.
Zwanziger
and
E. R.
Grant
,
J. Chem. Phys.
87
,
2954
(
1987
).
27.
T. J.
Lee
,
D. J.
Fox
,
H. F.
Schaefer
 III
, and
R. M.
Pitzer
,
J. Chem. Phys.
81
,
356
(
1984
).
28.
H.
Koch
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
T.
Helgaker
,
J. Chem. Phys.
93
,
3345
(
1990
).
29.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
30.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
31.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
32.
D. M.
Babikov
,
V.
Mozhayskiy
, and
A.
Krylov
J. Chem. Phys.
(submitted).
33.
P.
Piecuch
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
110
,
6103
(
1999
).
34.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
35.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
102
,
2032
(
1995
).
36.
A. I.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
37.
A. I.
Krylov
and
C. D.
Sherrill
,
J. Chem. Phys.
116
,
3194
(
2002
).
38.
J.
Kong
,
C. A.
White
,
A. I.
Krylov
 et al.,
J. Comput. Chem.
21
,
1532
(
2000
).
39.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
, ACES II,
1993
. The package also contains modified versions of the MOLECULE Gaussian integral program of J. Almlöf and P. R. Taylor, the ABACUS integral derivative program written by T. U. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and P. R. Taylor, and the PROPS property evaluation integral code of P. R. Taylor.
40.

Polar radius and angle are hyperspherical coordinates θ and ϕ, which are similar to the bending and asymmetric stretch normal mode, respectively. For the precise definition stereographic coordinates, see Ref. 12 and references therein.

41.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
The Multi-mode Vibronic-Coupling Approach
(
World Scientific
,
Singapore
,
2004
), Chap. 7, pp.
323
367
.
42.
Wolfram Research, MATHEMATICA, http://www.wolfram.com/
43.
T.
Carrington
,
Acc. Chem. Res.
7
,
20
(
1974
).
44.
T.
Carrington
,
Faraday Discuss. Chem. Soc.
53
,
27
(
1972
).
45.
H.
Köppel
,
Jahn-Teller and Pseudo-Jahn-Teller Intersections: Spectroscopy and Vibronic Dynamics
(
World Scientific
,
Singapore
,
2004
), Chap. 10, pp.
429
472
.
46.
V. I.
Pupyshev
(private communication).
47.
S.
Matsika
and
D. R.
Yarkony
,
J. Chem. Phys.
117
,
5607
(
2002
).
48.
S.
Matsika
and
D. R.
Yarkony
,
J. Am. Chem. Soc.
125
,
10672
(
2003
).
49.
G.
Halász
,
Á.
Vibk
,
A. M.
Mebel
, and
M.
Baer
,
J. Chem. Phys.
118
,
3052
(
2003
).
50.
J. M.
Dyke
,
N. B. H.
Jonathan
,
A. E.
Lewis
, and
A.
Morris
,
Mol. Phys.
47
,
1231
(
1982
).
You do not currently have access to this content.