We study the structure of carboxylic acid terminated neutral poly(propyl ether imine) (PETIM) dendrimer from generations 1–6 (G1–G6) in a good solvent (water) by fully atomistic molecular dynamics (MD) simulations. We determine as a function of generation the structural properties such as radius of gyration, shape tensor, asphericity, fractal dimension, monomer density distribution, and end-group distribution functions. The sizes obtained from the MD simulations have been validated by small angle x-ray scattering experiment on dendrimer of generations 2–4 (G2–G4). A good agreement between the experimental and theoretical value of radius of gyration has been observed. We find a linear increase in radius of gyration with the generation. In contrast, Rg scales as Nx with the number of monomers. We find two distinct exponents depending on the generations, x=0.47 for G1–G3 and x=0.28 for G3–G6, which reveal their nonspace filling nature. In comparison with the amine terminated poly(amidoamine) (PAMAM) dendrimer, we find that Rg of Gth generation PETIM dendrimer is nearly equal to that of (G+1)th generation of PAMAM dendrimer as observed by Maiti et al. [Macromolecules38, 979 (2005)]. We find substantial back folding of the outer subgenerations into the interior of the dendrimer. Due to their highly flexible nature of the repeating branch units, the shape of the PETIM dendrimer deviates significantly from the spherical shape and the molecules become more and more spherical as the generation increases. The interior of the dendrimer is quite open with internal cavities available for accommodating guest molecules, suggesting the use of PETIM dendrimer for guest-host applications. We also give a quantitative measure of the number of water molecules present inside the dendrimer.

1.
G. R.
Newkome
,
C. N.
Moorfield
, and
F.
Vögtle
,
Dendrimers and Dendrons: Concepts, Synthesis, Applications
(
Wiley-VCH
,
Weinheim, Germany
,
2001
).
2.
M.
Ballauff
,
Top. Curr. Chem.
112
,
177
(
2001
).
3.
A.
Adronov
and
J. M. J.
Fréchet
,
Chem. Commun. (Cambridge)
2000
,
1701
.
4.
M. A.
Hearshaw
and
J. R.
Moss
,
Chem. Commun. (Cambridge)
1999
,
1
.
5.
6.
A. W.
Bosman
,
H. M.
Janssen
, and
E. W.
Meijer
,
Chem. Rev. (Washington, D.C.)
99
,
1665
(
1999
).
7.
S.
Hecht
and
J. M. J.
Fréchet
,
Angew. Chem., Int. Ed.
40
,
74
(
2001
).
8.
J.
Nithyanandhan
and
N.
Jayaraman
,
J. Org. Chem.
67
,
6282
(
2002
).
9.
A.
Bielinska
,
J. F.
Kukowska-Latallo
,
J.
Johnson
,
D. A.
Tomalia
, and
J. R.
Baker
, Jr.
,
Nucleic Acids Res.
24
,
2176
(
1996
).
10.
D. S.
Shah
,
T.
Sakthivel
,
I.
Toth
,
A. T.
Florence
, and
A. F.
Wilderspin
,
Int. J. Pharm.
208
,
41
(
2000
).
11.
J. A.
Hughes
,
I. A.
Aronsohn
,
A. V.
Avrutskaya
, and
R. L.
Juliano
,
Pharm. Res.
13
,
404
(
1996
).
12.
H.
Yoo
,
P.
Sazani
, and
R. L.
Juliano
,
Pharm. Res.
16
,
1799
(
1999
).
13.
D. A.
Tomalia
,
A. M.
Naylor
, and
W. A.
Goddard
 III
,
Angew. Chem., Int. Ed. Engl.
29
,
138
(
1990
).
14.
S.
Rosenfeldt
,
N.
Dingenouts
,
M.
Ballauff
,
P.
Lindner
,
C. N.
Likos
,
N.
Werner
, and
F.
Vögtle
,
Macromol. Chem. Phys.
203
,
1995
(
2002
);
M.
Ballauff
and
C. N.
Likos
,
Angew. Chem., Int. Ed.
43
,
2998
(
2004
).
15.
A.
Topp
,
B. J.
Bauer
,
D. A.
Tomalia
, and
E. J.
Amis
,
Macromolecules
32
,
7232
(
1999
).
16.
T. J.
Prosa
,
B. J.
Bauer
, and
E. J.
Amis
,
Macromolecules
34
,
4897
(
2001
).
17.
R.
Scherrenberg
,
B.
Coussens
,
P.
van Vliet
,
G.
Edouard
,
J.
Brackman
, and
E.
de Brabander
,
Macromolecules
31
,
456
(
1998
).
18.
P. K.
Maiti
,
T.
Cagin
,
G.
Wang
, and
W. A.
Goddard
 III
,
Macromolecules
37
,
6236
(
2004
).
19.
P. K.
Maiti
,
T.
Cagin
,
S. T.
Lin
, and
W. A.
Goddard
 III
,
Macromolecules
38
,
979
(
2005
).
20.
E.
Canetta
and
G.
Maino
,
Nucl. Instrum. Methods Phys. Res. B
213
,
71
(
2004
).
21.
D.
Boris
and
M.
Rubinstein
,
Macromolecules
29
,
7251
(
1996
).
22.
M. L.
Mansfield
and
I. L.
Klushin
,
Macromolecules
26
,
4262
(
1993
).
23.
A. V.
Lyulin
,
G. R.
Davies
, and
D. B.
Adolf
,
Macromolecules
33
,
6899
(
2000
).
24.
A. V.
Lyulin
,
G. R.
Davies
, and
D. B.
Adolf
,
Macromolecules
33
,
3294
(
2000
).
25.
T.
Cagin
,
G.
Wang
,
R.
Martin
,
W. A.
Goddard
 III
, and
N.
Breen
,
Nanotechnology
11
,
77
(
2000
).
26.
K. J.
Naidoo
,
S. J.
Hughes
, and
J. R.
Moss
,
Macromolecules
32
,
331
(
1999
).
27.
P. G.
de Gennes
and
H.
Hervet
,
J. Phys. (France)
44
,
L351
(
1983
).
28.
S.
Tretiak
and
S.
Mukamel
,
Chem. Rev. (Washington, D.C.)
102
,
3171
(
2002
).
29.
T.
Tada
,
D.
Nozaki
,
M.
Kondo
, and
K.
Yoshizawa
,
J. Phys. Chem. B
107
,
14204
(
2003
).
30.
C. J.
Hawker
and
J. M. J.
Fréchet
,
J. Am. Chem. Soc.
112
,
7638
(
1990
).
31.
R. L.
Lescanec
and
M.
Muthukumar
,
Macromolecules
23
,
2280
(
1990
).
32.
M.
Murat
and
G. S.
Grest
,
Macromolecules
29
,
1278
(
1996
).
33.
A. M.
Naylor
,
W. A.
Goddard
 III
,
G. E.
Keiffer
, and
D. A.
Tomalia
,
J. Am. Chem. Soc.
111
,
2339
(
1989
).
34.
C. B.
Gorman
and
J. C.
Smith
,
Polymer
41
,
675
(
2000
).
35.
M.
Han
,
P.
Chen
, and
X.
Yang
,
Polymer
46
,
3481
(
2005
).
36.
S.
Rosenfeldt
,
N.
Dingenouts
,
M.
Ballauff
,
P.
Lindner
,
C. N.
Likos
,
N.
Werner
, and
F.
Vogtle
,
Macromol. Chem. Phys.
203
,
1995
(
2002
).
37.
N. C.
Beck Tan
,
L.
Balogh
,
S. F.
Trevino
,
D. A.
Tomalia
, and
J. S.
Lin
,
Polymer
40
,
2537
(
1999
).
38.
T. R.
Krishna
and
N.
Jayaraman
,
J. Org. Chem.
68
,
9694
(
2003
);
[PubMed]
T. R.
Krishna
,
M.
Belwal
,
U. S.
Tatu
, and
N.
Jayaraman
,
Tetrahedron
61
,
4281
(
2005
).
39.
CERIUS2 Modeling Environment, Release 4.0.,
Accelrys Inc.
, San Diego, CA,
1999
.
40.
A. K.
Rappe
and
W. A.
Goddard
 III
,
J. Phys. Chem.
95
,
3358
(
1991
).
41.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
 III
,
J. Phys. Chem.
94
,
8897
(
1990
).
42.
D. A.
Case
,
D. A.
Pearlman
,
J. W.
Caldwell
 et al, AMBER 7,
University of California
, San Francisco,
2002
.
43.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
44.
G.
Evmenenko
,
B. J.
Bauer
,
R.
Kleppinger
,
B.
Forier
,
W.
Dehaen
,
E. J.
Amis
,
N.
Mischenko
, and
H.
Reynaers
,
Macromol. Chem. Phys.
202
,
891
(
2001
).
45.
I. O.
Gotze
and
C. N.
Likos
,
Macromolecules
36
,
8189
(
2003
).
46.
C. L.
Jackson
,
H. D.
Chanzy
,
F. P.
Booy
,
B. J.
Drake
,
D. A.
Tomalia
,
B. J.
Bauer
, and
E. J.
Amis
,
Macromolecules
31
,
6259
(
1998
).
47.
J.
Li
,
L. T.
Piehler
,
D.
Qin
,
J. R.
Baker
,
D. A.
Tomalia
, and
D. J.
Meier
,
Langmuir
16
,
5613
(
2000
).
48.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
Cambridge
,
1995
).
49.
G.
Rudnick
and
G.
Gaspari
,
J. Phys. A
4
,
L191
(
1986
).
50.
S. T.
Lin
,
P. K.
Maiti
, and
W. A.
Goddard
 III
,
J. Phys. Chem. B
109
,
8663
(
2005
).
51.
G.
Evmenenko
,
B. J.
Bauer
,
R.
Kleppinger
,
B.
Forier
,
W.
Dehaen
,
E. J.
Amis
,
N.
Mischenko
, and
H.
Reynaers
,
Macromol. Chem. Phys.
202
,
891
(
2001
).
52.
A. I.
Kuklin
,
A. N.
Ozerin
,
A. K.
Islamov
 et al,
J. Appl. Crystallogr.
36
,
679
(
2003
).
You do not currently have access to this content.