In order to introduce flexibility into the simple point-charge (SPC) water model, the impact of the intramolecular degrees of freedom on liquid properties was systematically studied in this work as a function of many possible parameter sets. It was found that the diffusion constant is extremely sensitive to the equilibrium bond length and that this effect is mainly due to the strength of intermolecular hydrogen bonds. The static dielectric constant was found to be very sensitive to the equilibrium bond angle via the distribution of intermolecular angles in the liquid: A larger bond angle will increase the angle formed by two molecular dipoles, which is particularly significant for the first solvation shell. This result is in agreement with the work of Höchtl et al. [J. Chem. Phys.109, 4927 (1998)]. A new flexible simple point-charge water model was derived by optimizing bulk diffusion and dielectric constants to the experimental values via the equilibrium bond length and angle. Due to the large sensitivities, the parametrization only slightly perturbs the molecular geometry of the base SPC model. Extensive comparisons of thermodynamic, structural, and kinetic properties indicate that the new model is much improved over the standard SPC model and its overall performance is comparable to or even better than the extended SPC model.

1.
K. A. T.
Silverstein
,
A. D. J.
Haymet
, and
K. A.
Dill
,
J. Am. Chem. Soc.
120
,
3166
(
1998
).
2.
C. J.
Burnham
and
S. S.
Xantheas
,
J. Chem. Phys.
116
,
5115
(
2002
).
3.
J.
Jeon
,
A. E.
Lefohn
, and
G. A.
Voth
,
J. Chem. Phys.
118
,
7504
(
2003
).
4.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
5.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, in
Intermolecular Forces
, edited by
B.
Pullman
(
Reidel
, Dordrecht,
1981
), p.
331
.
6.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
,
J. Chem. Phys.
108
,
10220
(
1998
).
7.
A.
Glättli
,
X.
Daura
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
116
,
9811
(
2002
).
8.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
9.
D. P.
Tieleman
and
H. J. C.
Berendsen
,
J. Chem. Phys.
105
,
4871
(
1996
).
10.
A. R.
van Buuren
,
S.-J.
Marrink
, and
H. J. C.
Berendsen
,
J. Phys. Chem.
97
,
9206
(
1993
).
11.
K.
Toukan
and
A.
Rahman
,
Phys. Rev. B
31
,
2643
(
1984
).
12.
M.
Levitt
,
M.
Hirshberg
,
R.
Sharon
,
K. E.
Laidig
, and
V.
Daggett
,
J. Phys. Chem. B
101
,
5051
(
1997
).
13.
L. X.
Dang
and
B. M.
Pettitt
,
J. Phys. Chem.
91
,
3349
(
1987
).
14.
A.
Wallqvist
and
O.
Teleman
,
Mol. Phys.
74
,
515
(
1991
).
15.
O.
Teleman
,
B.
Jönsson
, and
S.
Engstrom
,
Mol. Phys.
60
,
193
(
1987
).
16.
D. M.
Ferguson
,
J. Comput. Chem.
16
,
501
(
1995
).
17.
I. G.
Tironi
,
R. M.
Brunne
, and
W. F.
van Gunsteren
,
Chem. Phys. Lett.
250
,
19
(
1996
).
18.
A.
Warshel
,
Computer Modeling of Chemical Reactions in Enzymes and Solutions
(
Wiley
, New York,
1991
).
19.
U. W.
Schmitt
and
G. A.
Voth
,
J. Phys. Chem. B
102
,
5547
(
1998
).
20.
U. W.
Schmitt
and
G. A.
Voth
,
J. Chem. Phys.
111
,
9361
(
1999
).
21.
T. J. F.
Day
,
A. V.
Soudackov
,
U. W.
Schmitt
, and
G. A.
Voth
,
J. Chem. Phys.
117
,
5839
(
2002
).
22.
H. L.
Tepper
and
G. A.
Voth
,
Biophys. J.
88
,
3095
(
2005
).
23.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
24.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
25.
S.
Melchionna
,
G.
Ciccotti
, and
B. L.
Holian
,
Mol. Phys.
78
,
533
(
1993
).
26.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulations of Liquids
(
Oxford Science
, Oxford,
1987
).
27.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
28.
H. G.
Petersen
,
J. Chem. Phys.
103
,
3668
(
1995
).
29.
U.
Essman
,
L.
Perela
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
30.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
31.
W.
Smith
and
T. R.
Forester
,
J. Mol. Graphics
14
,
136
(
1996
).
32.
W.
Smith
and
T. R.
Forester
,
The DḺPOLY 2 User Manual
(
CCLRC
, Daresbury Laboratory, Daresbury, Warrington, England,
1999
);
33.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Druner
,
Comput. Phys. Commun.
91
,
43
(
1995
).
34.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
35.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
(
2004
).
36.
M.
Neumann
,
Mol. Phys.
50
,
841
(
1983
).
37.
D. W.
Jepsen
,
J. Chem. Phys.
44
,
774
(
1966
).
38.
J.
Verhoeven
and
A.
Dymanus
,
J. Chem. Phys.
52
,
3222
(
1970
).
39.
S. L.
Carnie
and
G. N.
Patey
,
Mol. Phys.
47
,
1129
(
1982
).
40.
A. K.
Soper
,
Chem. Phys. Lett.
258
,
121
(
2000
).
41.
M.
Neumann
,
J. Chem. Phys.
82
,
5663
(
1985
).
42.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
106
,
2400
(
1997
).
43.
M.
Neumann
,
Mol. Phys.
57
,
97
(
1986
).
44.
I. G.
Tironi
and
W. F.
van Gunsteren
,
Mol. Phys.
83
,
381
(
1994
).
45.
K. A.
Motakabbir
and
M.
Berkowitz
,
J. Phys. Chem.
94
,
8359
(
1990
).
46.
B.
Hess
,
J. Chem. Phys.
116
,
209
(
2002
).
47.
A.
Luzar
and
D.
Chandler
,
Nature (London)
379
,
55
(
1996
).
48.
A.
Luzar
and
D.
Chandler
,
Phys. Rev. Lett.
76
,
928
(
1996
).
49.
H.
Xu
,
H. A.
Stern
, and
B. J.
Berne
,
J. Phys. Chem. B
106
,
2054
(
2002
).
50.
P.
Höchtl
,
S.
Boresch
,
W.
Bitomsky
, and
O.
Steinhauser
,
J. Chem. Phys.
109
,
4927
(
1998
).
51.
G. N.
Patey
,
D.
Levesque
, and
J. J.
Weis
,
Mol. Phys.
38
,
1635
(
1979
).
52.
D. J.
Price
and
C. L.
Brooks
 III
,
J. Chem. Phys.
121
,
10096
(
2004
).
53.
S. W.
Rick
,
J. Chem. Phys.
120
,
6085
(
2004
).
54.
K.
Ichikawa
,
Y.
Kameda
,
T.
Yamaguchi
,
H.
Wakita
, and
M.
Misawa
,
Mol. Phys.
73
,
79
(
1991
).
55.
N. W.
Moriarty
and
G.
Karlström
,
J. Chem. Phys.
106
,
6470
(
1997
).
56.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
116
,
10372
(
2002
).
57.
Y. S.
Badyal
,
M.-L.
Saboungi
,
D. L.
Price
,
S. D.
Shastri
,
D. R.
Haeffner
, and
A. K.
Soper
,
J. Chem. Phys.
112
,
9206
(
2000
).
58.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
59.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
60.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
61.
E. R.
Batista
,
S. S.
Xantheas
, and
H.
Jónsson
,
J. Chem. Phys.
111
,
6011
(
1999
).
62.
F. N.
Keutsch
,
R. S.
Fellers
,
M. G.
Brown
,
M. R.
Viant
,
P. B.
Petersen
, and
R. J.
Saykally
,
J. Am. Chem. Soc.
123
,
5938
(
2001
).
63.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
55
,
3336
(
1971
).
64.
W.
Wagner
and
A.
Pruss
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
65.
U.
Kaatze
,
J. Chem. Eng. Data
34
,
371
(
1989
).
66.
Water: A Comprehensive Treatise
, edited by
F.
Franks
(
Plenum
, New York,
1972
).
67.
Handbook of Chemistry and Physics
, edited by
R. C.
Weast
(
CRC
, Cleveland,
1977
).
68.
B.
Halle
and
H.
Wennerstrom
,
J. Chem. Phys.
75
,
1928
(
1981
).
69.
G. S.
Kell
,
J. Chem. Eng. Data
12
,
66
(
1967
).
70.
K.
Krynicki
,
C. D.
Green
, and
D. W.
Sawyer
,
Faraday Discuss. Chem. Soc.
66
,
199
(
1978
).
71.
R.
Ludwig
,
Chem. Phys. Lett.
195
,
329
(
1995
).
72.
J. R. C.
van der Maarel
,
D.
Lankhorst
,
J.
de Bleijser
, and
J. C.
Leyte
,
Chem. Phys. Lett.
122
,
541
(
1985
).
73.
R. P. W. J.
Struis
,
J.
de Bleijser
, and
J. C.
Leyte
,
J. Phys. Chem.
91
,
1639
(
1987
).
74.
T. W. N.
Bieze
,
J. R. C.
van der Maarel
, and
J. C.
Leyte
,
Chem. Phys. Lett.
216
,
56
(
1993
).
75.
J. M.
Sorenson
,
G.
Hura
,
R. M.
Glaeser
, and
T.
Head-Gordon
,
J. Chem. Phys.
113
,
9149
(
2000
).
You do not currently have access to this content.