We analyze the efficiency of several simulation methods which we have recently proposed for calculating rate constants for rare events in stochastic dynamical systems in or out of equilibrium. We derive analytical expressions for the computational cost of using these methods and for the statistical error in the final estimate of the rate constant for a given computational cost. These expressions can be used to determine which method to use for a given problem, to optimize the choice of parameters, and to evaluate the significance of the results obtained. We apply the expressions to the two-dimensional nonequilibrium rare event problem proposed by Maier and Stein [Phys. Rev. E48, 931 (1993)]. For this problem, our analysis gives accurate quantitative predictions for the computational efficiency of the three methods.

1.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
024102
(
2006
).
2.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic
,
Boston
,
2002
).
3.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
,
Adv. Chem. Phys.
123
,
1
(
2002
).
4.
G. E.
Crooks
and
D.
Chandler
,
Phys. Rev. E
64
,
0261091
(
2001
).
5.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
6.
D.
Moroni
,
P. G.
Bolhuis
, and
T. S.
van Erp
,
J. Chem. Phys.
120
,
4055
(
2004
).
7.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
8.
W. E. W.
Ren
and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
9.
W. E. W.
Ren
and
E.
Vanden-Eijnden
,
J. Phys. Chem. B
109
,
6688
(
2005
).
10.
M.
Villén-Altamirano
and
J.
Villén-Altamirano
,
Queueing, Performance and Control in ATM: Proceedings of the 13th International Telegraphic Congress
, edited by
J. W.
Cohen
and
C. D.
Pack
, published by
Elsevier Science
,
1991
, pp.
71
76
.
11.
M.
Villén-Altamirano
,
A.
Martínez-Marrón
,
J. L.
Gamo
, and
F.
Fernández-Cuesta
,
The Fundamental Role of Teletraffic in the Evolution of Telecommunications Networks: Proceedings of the 14th International Telegraphic Congress
, edited by
J.
Labetoulle
and
J. W.
Roberts
, published by
Elsevier Science
,
1994
, pp.
797
810
.
12.
M.
Villén-Altamirano
and
J.
Villén-Altamirano
,
European Transactions on Telecommunications
13
,
373
(
2002
).
13.
A. J.
Bayes
,
Aust. Comput. J.
2
,
180
(
1970
).
14.
G. A.
Huber
and
S.
Kim
,
Biophys. J.
70
,
97
(
1996
).
15.
R. S.
Maier
and
D. L.
Stein
,
Phys. Rev. E
48
,
931
(
1993
).
16.
R. S.
Maier
and
D. L.
Stein
,
J. Stat. Phys.
83
,
291
(
1996
).
17.
D. G.
Luchinsky
,
R. S.
Maier
,
R.
Mannella
,
P. V. E.
McClintock
, and
D. L.
Stein
,
Phys. Rev. Lett.
82
,
1806
(
1999
).
18.
T. S.
van Erp
, Ph.D. thesis,
Universiteit van Amsterdam
,
2003
.
19.
D.
Moroni
, Ph.D. thesis,
Universiteit van Amsterdam
,
2005
.
20.
T. S.
van Erp
and
P. G.
Bolhuis
,
J. Comput. Phys.
205
,
157
(
2005
).
21.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
ten Wolde
,
Phys. Rev. Lett.
94
,
018104
(
2005
).
22.
P.
Grassberger
,
Phys. Rev. E
56
,
3682
(
1997
).
23.
D.
Aldous
and
U.
Vazirani
,
Inf. Comput.
117
,
181
(
1995
).
24.
M. N.
Rosenbluth
and
A. W.
Rosenbluth
,
J. Chem. Phys.
23
,
356
(
1955
).
25.
D.
Frenkel
,
G. C. A. M.
Mooij
, and
B.
Smit
,
J. Phys.: Condens. Matter
3
,
3053
(
1991
).
26.
D.
Frenkel
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
17571
(
2004
).
27.
G. C. A. M.
Mooij
and
D.
Frenkel
,
Mol. Simul.
17
,
41
(
1996
).
28.
Z.
Farkas
and
T.
Fülöp
,
J. Phys. A
34
,
3191
(
2001
).
29.
K. F.
Riley
,
M. P.
Hobson
, and
S. J.
Bence
,
Mathematical Methods for Physics and Engineering
(
Cambridge University Press
,
Cambridge
,
2000
).
30.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 6th ed. (
Academic
,
New York
,
2000
).
31.
D. G.
Luchinsky
and
P. V. E.
McClintock
,
Nature (London)
389
,
463
(
1997
).
32.
D. G.
Luchinsky
,
R. S.
Maier
,
R.
Mannella
,
P. V. E.
McClintock
, and
D. L.
Stein
,
Phys. Rev. Lett.
79
,
3109
(
1997
).
33.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1987
).
34.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1970
).
You do not currently have access to this content.