Local chain structure and local environment play an important role in the dynamics of polymer chains in miscible blends. In general, the friction coefficients that describe the segmental dynamics of the two components in a blend differ from each other and from those of the pure melts. In this work, we investigate polymer blend dynamics with Monte Carlo simulations of a generalized bond fluctuation model, where differences in the interaction energies between nonbonded nearest neighbors distinguish the two components of a blend. Simulations employing only local moves and respecting a no bond crossing condition were carried out for blends with a range of compositions, densities, and chain lengths. The blends investigated here have long time dynamics in the crossover region between Rouse and entangled behavior. In order to investigate the scaling of the self-diffusion coefficients, characteristic chain lengths Nc are calculated from the packing length of the chains. These are combined with a local mobility μ determined from the acceptance rate and the effective bond length to yield characteristic self-diffusion coefficients Dc=μNc. We find that the data for both melts and blends collapse onto a common line in a graph of reduced diffusion coefficients DDc as a function of reduced chain length NNc. The composition dependence of dynamic properties is investigated in detail for melts and blends with chains of length N=20 at three different densities. For these blends, we calculate friction coefficients from the local mobilities and consider their composition and pressure dependence. The friction coefficients determined in this way show many of the characteristics observed in experiments on miscible blends.

1.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
2.
A. Y.
Grosberg
and
A. R.
Khokhlov
,
Statistical Physics of Macromolecules
,
AIP Series in Polymers and Complex Materials
(
American Institute of Physics
,
Woodbury, NY
,
1994
).
3.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
Ithaca, NY
,
1979
).
4.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
, 3rd ed. (
Wiley
,
New York
,
1980
).
5.
C. M.
Roland
and
K. L.
Ngai
,
Macromolecules
24
,
2261
(
1991
).
6.
C. M.
Roland
and
K. L.
Ngai
,
Macromolecules
25
,
363
(
1992
);
C. M.
Roland
and
K. L.
Ngai
,
Macromolecules
33
,
3184
(
2000
).
7.
G. C.
Chung
,
J. A.
Kornfield
, and
S. D.
Smith
,
Macromolecules
27
,
964
(
1994
).
8.
Y.
He
,
T. R.
Lutz
, and
M. D.
Ediger
,
J. Chem. Phys.
119
,
9956
(
2003
).
9.
G. C.
Chung
,
J. A.
Kornfield
, and
S. D.
Smith
,
Macromolecules
27
,
5729
(
1994
).
10.
A.
Alégria
,
J.
Colmenero
,
K. L.
Ngai
, and
C. M.
Roland
,
Macromolecules
27
,
4486
(
1994
).
11.
E.
Kim
,
E. J.
Kramer
, and
J. O.
Osby
,
Macromolecules
28
,
1979
(
1995
).
12.
J. A.
Pathak
, Ph.D. thesis,
The Pennsylvania State University
,
2001
.
13.
B.
Min
,
X. H.
Qiu
,
M. D.
Ediger
,
M.
Pitsikalis
, and
N.
Hadjichristidis
,
Macromolecules
34
,
4466
(
2001
).
14.
J. C.
Haley
,
T. P.
Lodge
,
Y.
He
,
M. D.
Ediger
,
E. D.
von Meerwall
, and
J.
Mijovic
,
Macromolecules
36
,
6142
(
2003
).
15.
T. R.
Lutz
,
Y.
He
,
M. D.
Ediger
,
H.
Cao
,
G.
Lin
, and
A. A.
Jones
,
Macromolecules
36
,
1724
(
2003
).
16.
J. C.
Haley
and
T. P.
Lodge
,
Colloid Polym. Sci.
282
,
793
(
2004
).
17.
T. R.
Lutz
,
Y.
He
,
M. D.
Ediger
,
M.
Pitsikalis
, and
N.
Hadjichristidis
,
Macromolecules
37
,
6440
(
2004
).
18.
A.
Alegría
,
D.
Gómez
, and
J.
Colmenero
,
Macromolecules
35
,
2030
(
2002
).
19.
M.
Doxastakis
,
M.
Kitsiou
,
G.
Fytas
,
D. N.
Theodorou
,
N.
Hadjichristis
,
G.
Meier
, and
B.
Frick
,
J. Chem. Phys.
112
,
8687
(
2000
).
20.
A.-C.
Genix
,
A.
Arbe
,
F.
Alvarez
,
J.
Colmenero
,
L.
Willner
, and
D.
Richter
,
Phys. Rev. E
72
,
031808
(
2005
).
21.
A.
Kopf
,
B.
Dünweg
, and
W.
Paul
,
J. Chem. Phys.
107
,
6945
(
1997
).
22.
S.
Kamath
,
R. H.
Colby
, and
S. K.
Kumar
,
Macromolecules
36
,
8567
(
2003
).
23.
J.
Budzien
,
C.
Raphael
,
M. D.
Ediger
, and
J. J.
de Pablo
,
J. Chem. Phys.
116
,
8209
(
2002
).
24.
R.
Faller
,
Macromolecules
37
,
1095
(
2004
).
25.
A.
Neelakantan
,
A.
May
, and
J. K.
Maranas
,
Macromolecules
38
,
6598
(
2005
).
26.
A.
Zetsche
and
E. W.
Fischer
,
Acta Polym.
45
,
168
(
1994
).
27.
G.
Katana
,
E. W.
Fischer
,
T.
Hack
,
V.
Abetz
, and
F.
Kremer
,
Macromolecules
28
,
2714
(
1995
).
28.
S. K.
Kumar
,
R. H.
Colby
,
S. H.
Anastasiadis
, and
G.
Fytas
,
J. Chem. Phys.
105
,
3777
(
1996
).
29.
S.
Kamath
,
R. H.
Colby
,
S. K.
Kumar
,
K.
Karatasos
,
G.
Floudas
,
G.
Fytas
, and
J. E. L.
Roovers
,
J. Chem. Phys.
111
,
6121
(
1999
).
30.
T. P.
Lodge
and
T. C. B.
McLeish
,
Macromolecules
33
,
5278
(
2000
).
31.
E.
Leroy
,
A.
Alegría
, and
J.
Colmenero
,
Macromolecules
36
,
7280
(
2003
).
32.
R.
Kant
,
S. K.
Kumar
, and
R. H.
Colby
,
Macromolecules
36
,
10087
(
2003
).
33.
K. L.
Ngai
and
C. M.
Roland
,
Rubber Chem. Technol.
77
,
579
(
2004
).
34.
J.
Luettmer-Strathmann
,
J. Chem. Phys.
123
,
014910
(
2005
).
35.
W. W.
Graessley
and
S. F.
Edwards
,
Polymer
22
,
1329
(
1981
).
36.
Y.-H.
Lin
,
Macromolecules
20
,
3080
(
1987
).
37.
T. A.
Kavassalis
and
J.
Noolandi
,
Phys. Rev. Lett.
59
,
2674
(
1987
).
38.
L. J.
Fetters
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
,
Macromolecules
32
,
6847
(
1999
).
39.
R.
Everaers
,
S. K.
Sukumaran
,
G. S.
Grest
,
C.
Svaneborg
,
A.
Sivasubramanian
, and
K.
Kremer
,
Science
303
,
823
(
2004
).
40.
S. K.
Sukumaran
,
G. S.
Grest
,
K.
Kremer
, and
R.
Everaers
,
J. Polym. Sci., Part B: Polym. Phys.
43
,
917
(
2005
).
41.
S. T.
Milner
,
Macromolecules
38
,
4929
(
2005
).
42.
K.
Binder
and
W.
Paul
,
J. Polym. Sci., Part B: Polym. Phys.
35
,
1
(
1997
).
43.
M.
Müller
,
J. P.
Wittmer
, and
J.-L.
Barrat
,
Europhys. Lett.
52
,
406
(
2000
).
44.
M.
Tanaka
,
K.
Iwata
, and
N.
Kuzuu
,
Comput. Theor. Polym. Sci.
10
,
299
(
2000
).
45.
T.
Kreer
,
J.
Baschnagel
,
M.
Müller
, and
K.
Binder
,
Macromolecules
34
,
1105
(
2001
).
46.
W.
Paul
and
G. D.
Smith
,
Rep. Prog. Phys.
67
,
1117
(
2004
).
47.
S.
León
,
N.
van der Vegt
,
L.
Delle Site
, and
K.
Kremer
,
Macromolecules
38
,
8078
(
2005
).
48.
W.
Hess
,
Macromolecules
19
,
1395
(
1986
).
49.
W.
Hess
,
Macromolecules
21
,
2620
(
1988
).
50.
W.
Paul
,
K.
Binder
,
D. W.
Heermann
, and
K.
Kremer
,
J. Phys. II
1
,
37
(
1991
).
51.
J. S.
Shaffer
,
J. Chem. Phys.
101
,
4205
(
1994
).
52.
J. S.
Shaffer
,
J. Chem. Phys.
103
,
761
(
1995
).
53.
X.
Pan
and
J. S.
Shaffer
,
Macromolecules
29
,
4453
(
1996
).
54.
F. T.
Wall
and
F.
Mandel
,
J. Chem. Phys.
63
,
4592
(
1975
).
55.
J.
Houdayer
,
J. Chem. Phys.
116
,
1783
(
2002
).
56.
N. C.
Karayiannis
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
Phys. Rev. Lett.
88
,
105501
(
2002
).
57.
N. C.
Karayiannis
,
A. E.
Giannousaki
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
J. Chem. Phys.
117
,
5465
(
2002
).
58.
M. E. J.
Newman
and
G. T.
Barkema
,
Monte Carlo Methods in Statistical Physics
(
Clarendon
,
Oxford, UK
,
1999
).
59.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations: From Algorithms to Applications
(
Academic
,
San Diego, CA
,
1996
).
61.
J. A.
McCormick
,
C. K.
Hall
, and
S. A.
Khan
,
J. Chem. Phys.
122
,
114902
(
2005
).
62.
D. S.
Pearson
,
G.
Ver Strate
,
E.
von Meerwall
, and
F. C.
Schilling
,
Macromolecules
20
,
1133
(
1987
).
63.
D. S.
Pearson
,
L. J.
Fetters
,
W. W.
Graessley
,
G.
Ver Strate
, and
E.
von Meerwall
,
Macromolecules
27
,
711
(
1994
).
64.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University
,
Ithaca, NY
,
1953
).
65.
R.
Dickman
and
C. K.
Hall
,
J. Chem. Phys.
85
,
3023
(
1986
).
66.
R.
Dickman
,
J. Chem. Phys.
87
,
2246
(
1987
).
67.
T.
Inoue
and
K.
Osaki
,
Macromolecules
29
,
1595
(
1996
).
68.
J.
Luettmer-Strathmann
and
R.
Khatri
(unpublished).
You do not currently have access to this content.