The tribological and tribochemical properties of 510nm thick Ag films sliding on various metal and inorganic substrates were measured using a surface forces apparatus coupled with ex situ x-ray photoelectron spectroscopy. We observed enhanced chemical reactivity in the sheared regions compared to the unsheared regions, which we attribute to significant frictional heating in agreement with two recent simulations. It is also found that the initial topography (roughness) of the films plays a significant role in determining the friction, wear, and tribochemical reactions. The larger the surface roughness, the larger are the friction coefficients. Initially smooth surfaces, forming large continuous junctions, create large wear debris particles; whereas initially rough surfaces, forming many small junctions, create many small particles. Even though initially smooth surfaces are chemically less reactive than initially rough surfaces, they are tribochemically more reactive, forming two to three times more oxides of silver during shearing than under static conditions and organometals of silver that under normal (static) conditions do not form. The chemical reactions observed cannot be explained without including the tribological processes, such as the local stresses, temperature rises, and type of wear produced by the shearing surfaces.

1.
T. E.
Fischer
,
Annu. Rev. Mater. Sci.
18
,
303
(
1988
).
2.
S. M.
Hsu
,
J.
Zhang
, and
Z. F.
Yin
,
Tribol. Lett.
13
,
131
(
2002
).
3.
M.
Affatigato
,
D. H.
Osborne
, and
R. F.
Haglund
,
J. Am. Ceram. Soc.
79
,
688
(
1996
).
4.
S. M.
Lee
,
Y. H.
Lee
,
Y. G.
Hwang
,
J. R.
Hahn
, and
H.
Kang
,
Phys. Rev. Lett.
82
,
217
(
1999
).
5.
L.
Vattuone
,
U.
Burghaus
,
L.
Savio
,
M.
Rocca
,
G.
Costantini
,
F. B.
de Mongeot
,
C.
Borango
,
S.
Rusponi
, and
U.
Valbusa
,
J. Chem. Phys.
115
,
3346
(
2001
).
6.
J. N.
Israelachvili
and
P. M.
McGuiggan
,
J. Mater. Res.
5
,
2223
(
1990
).
7.
F. P.
Bowden
and
D.
Tabor
,
The Friction and Lubrication of Solids
(
Clarendon
,
New York/Oxford University Press, Oxford
,
2001
).
8.
M. A.
Sherbiney
and
J.
Halling
,
Wear
45
,
211
(
1977
).
9.
A.
Erdemir
,
R. A.
Erck
,
G. R.
Fenske
, and
H.
Hong
,
Wear
203
,
588
(
1997
).
10.
N.
Marechal
,
E.
Quesnel
,
P.
Juliet
Y.
Pauleau
, and
C.
Zimmermann
,
Thin Solid Films
249
,
70
(
1994
).
11.
S. W.
Zhang
and
H. Q.
Lan
,
Tribol. Int.
35
,
321
(
2002
).
12.
G.
Luengo
,
F. J.
Schmitt
,
R.
Hill
, and
J.
Israelachvili
,
Macromolecules
30
,
2482
(
1997
).
13.
M. G.
Lagally
,
R.
Kariotis
,
B. S.
Swartzentruber
, and
Y. W.
Mo
,
Ultramicroscopy
31
,
87
(
1989
).
14.
D. E.
Savage
,
N.
Schimke
,
Y. H.
Phang
, and
M. G.
Lagally
,
J. Appl. Phys.
71
,
3283
(
1992
).
15.
J.
Israelachvili
,
N.
Maeda
,
K. J.
Rosenberg
, and
M.
Akbulut
,
J. Mater. Res.
20
,
1952
(
2005
).
16.
L. S.
Debernardez
,
J.
Ferron
,
E. C.
Goldberg
, and
R. H.
Buitrago
,
Surf. Sci.
139
,
541
(
1984
).
17.
S.
Biniak
,
M.
Pakula
, and
A.
Swiatkowski
,
J. Appl. Electrochem.
29
,
481
(
1999
).
18.
J. F.
Archard
and
R. A.
Rowntree
,
Wear
128
,
1
(
1988
).
19.
A. F.
Benton
and
L. C.
Drake
,
J. Am. Chem. Soc.
56
,
255
(
1934
).
20.
H. W.
Xie
,
K. Y.
Song
,
D. J.
Mann
, and
W. L.
Hase
,
Phys. Chem. Chem. Phys.
4
,
5377
(
2002
).
21.
U.
Landman
,
W. D.
Luedtke
, and
M. W.
Ribarsky
,
J. Vac. Sci. Technol. A
7
,
2829
(
1989
).
22.
G.
Costantini
,
F. B.
de Mongeot
,
S.
Rusponi
,
S.
Rusponi
,
C.
Boragno
,
U.
Valbusa
,
L.
Vattuone
,
U.
Burghaus
,
L.
Savio
, and
M.
Rocca
,
J. Chem. Phys.
112
,
6840
(
2000
).
You do not currently have access to this content.