The CO2(010)O(P3) vibrational energy transfer (VET) efficiency is a key input to aeronomical models of the energy budget of the upper atmospheres of Earth, Venus, and Mars. This work addresses the physical mechanisms responsible for the high efficiency of the VET process at the thermal energies existing in the terrestrial upper atmosphere (150KT550K). We present a quantum-mechanical study of the process within a reduced-dimensionality approach. In this model, all the particles remain along a plane and the O(P3) atom collides along the C2v symmetry axis of CO2, which can present bending oscillations around the linear arrangement, while the stretching C–O coordinates are kept fixed at their equilibrium values. Two kinds of scattering calculations are performed on high-quality ab initio potential energy surfaces (PESs). In the first approach, the calculations are carried out separately for each one of the three PESs correlating to O(P3). In the second approach, nonadiabatic effects induced by spin-orbit couplings (SOC) are also accounted for. The results presented here provide an explanation to some of the questions raised by the experiments and aeronomical observations. At thermal energies, nonadiabatic transitions induced by SOC play a key role in causing large VET efficiencies, the process being highly sensitive to the initial fine-structure level of oxygen. At higher energies, the two above-mentioned approaches tend to coincide towards an impulsive Landau-Teller mechanism of the vibrational to translational (V-T) energy transfer.

1.
R. D.
Sharma
and
R. G.
Roble
,
ChemPhysChem
3
,
841
(
2002
).
2.
C. J.
Mertens
,
M. G.
Mlynczak
,
M.
López-Puertas
,
P. P.
Wintersteiner
,
R. H.
Picard
,
J. R.
Winick
, and
L. L.
Godley
,
Geophys. Res. Lett.
28
,
1391
(
2001
).
3.
R. L.
Taylor
,
Can. J. Chem.
52
,
1436
(
1974
).
4.
R. E.
Center
,
J. Chem. Phys.
59
,
3523
(
1973
).
5.
R. D.
Sharma
and
P. P.
Wintersteiner
,
Geophys. Res. Lett.
17
,
2201
(
1990
).
6.
G. M.
Shved
,
L. E.
Khvorostovskaya
,
I. Y.
Poteknin
,
A. I.
Dem’Ryanikov
,
A. A.
Kutepov
, and
V. I.
Fomichev
,
Atmos. Oceanic Phys.
27
,
295
(
1991
).
7.
D. S.
Pollock
,
G. B. I.
Scott
, and
L. F.
Phillips
,
Geophys. Res. Lett.
20
,
727
(
1993
).
8.
H. V.
Lilenfeld
, Air Force Phillips Laboratory Technical Report No. PL-TR-94-2180,
1994
(unpublished).
9.
L. E.
Khvorostovskaya
,
I. V.
Potekhin
,
G. M.
Shved
,
V. P.
Ogivalov
, and
T. V.
Uzyukova
,
Izve Atmos. Ocean. Phys.
38
,
613
(
2002
).
10.
M.
López-Puertas
,
M. A.
López-Valverde
,
C. P.
Rinsland
, and
M. R.
Gunson
,
J. Geophys. Res.
97
,
20469
(
1992
).
11.
K. J.
Castle
,
K. M.
Kleisas
,
J. M.
Rhinehart
,
E. S. H.
Hwang
, and
J. A.
Dodd
,
J. Geophys. Res. Space Phys.
(submitted).
12.
G. B. I.
Scott
,
D. S.
Pollock
, and
L. F.
Phillips
,
J. Chem. Soc., Faraday Trans.
58
,
1183
(
1993
).
13.
E. E.
Nikitin
and
S. Y.
Umanski
,
Faraday Discuss. Chem. Soc.
53
,
7
(
1972
).
14.
G. C.
Schatz
and
M. J.
Redmon
,
Chem. Phys.
89
,
195
(
1981
).
15.
N. M.
Harvey
,
Chem. Phys. Lett.
88
,
553
(
1982
).
16.
R. J.
Bartlett
and
M. J.
Redmon
, Air Force Rocket Propulsion Laboratory Report No. ADRPL-TR-81–27
1981
(unpublished).
17.
R. D. J.
Froese
and
J. D.
Goddard
,
J. Phys. Chem.
97
,
7484
(
1993
).
18.
A. M.
Mebel
,
M.
Hayashi
,
V. V.
Kislov
, and
S. H.
Lin
,
J. Phys. Chem. A
108
,
7983
(
2004
).
19.
A. S.
Averyanov
,
Y. G.
Khait
, and
Y. V.
Puzanov
,
J. Mol. Struct.
459
,
95
(
1999
).
20.
C. E.
Moore
,
Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen
(
CRC
,
Boca Raton, FL
,
1993
).
21.
H.-J.
Werner
and
P. J.
Knowles
, MOLPRO, Version 2002.6, a package of ab initio programs,
2002
.
22.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
23.
F. M.
Tao
and
Y. K.
Pan
,
J. Chem. Phys.
97
,
4989
(
1992
).
24.
B.
Fernández
,
H.
Koch
, and
J.
Makarewicz
,
J. Chem. Phys.
111
,
5922
(
1999
).
25.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
26.
H. B.
Jansen
and
P.
Ros
,
Chem. Phys. Lett.
3
,
140
(
1969
).
27.
G.
Herzberg
,
Spectra of Diatomic Molecules
, 2nd ed.,
Molecular Spectra and Molecular Structure I
(
Nostrand
,
Princeton
,
1950
).
28.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem.
S23
,
199
(
1989
).
29.

The induced dipole moments have been calculated at the global minimum from the distributed multipole analysis given in the Molpro program and described in Ref. 32. We have used the RHF density matrix and assigned a radius r=1a.u. to all sites.

30.
A. J.
Stone
,
Chem. Phys. Lett.
83
,
233
(
1981
).
31.
F.
Negri
,
F.
Ancilotto
,
G.
Mistura
, and
F.
Toigo
,
J. Chem. Phys.
111
,
6439
(
1999
).
32.
P. J.
Marshall
,
M. M.
Szcześniak
,
J.
Sadlej
,
G.
Chalasiński
,
M. A.
ter Horst
, and
C. J.
Jameson
,
J. Chem. Phys.
104
,
6569
(
1996
).
33.
M. P.
de Lara-Castells
,
Marta I.
Hernández
,
G.
Delgado-Barrio
,
P.
Villarreal
, and
M.
López-Puertas
(unpublished).
34.
A.
Berning
,
M.
Schweizer
,
H. J.
Werner
,
P. J.
Knowles
, and
P.
Palmieri
,
Mol. Phys.
98
,
1823
(
2000
).
35.
P.
Rosmus
,
P.
Palmieri
, and
R.
Schinke
,
J. Chem. Phys.
117
,
4871
(
2002
).
36.
I.
Navizet
and
P.
Rosmus
,
Chem. Phys. Lett.
411
,
457
(
2005
).
37.
M. P.
de Lara-Castells
, Ph.D. thesis,
Universidad Autónoma de Madrid
,
1998
.
38.
J. C.
Light
and
R. B.
Walker
,
J. Chem. Phys.
65
,
4272
(
1976
).
39.
E. B.
Stechel
,
R. B.
Walker
, and
J. C.
Light
,
J. Chem. Phys.
69
,
3518
(
1978
).
40.
D.
Danovich
and
S.
Shaik
,
J. Am. Chem. Soc.
119
,
1773
(
1997
).
You do not currently have access to this content.