Hybrid Fock exchange/density functional theory functionals have shown to be very successful in describing a wide range of molecular properties. For periodic systems, however, the long-range nature of the Fock exchange interaction and the resultant large computational requirements present a major drawback. This is especially true for metallic systems, which require a dense Brillouin zone sampling. Recently, a new hybrid functional [HSE03, J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.118, 8207 (2003)] that addresses this problem within the context of methods that evaluate the Fock exchange in real space was introduced. We discuss the advantages the HSE03 functional brings to methods that rely on a reciprocal space description of the Fock exchange interaction, e.g., all methods that use plane wave basis sets. Furthermore, we present a detailed comparison of the performance of the HSE03 and PBE0 functionals for a set of archetypical solid state systems by calculating lattice parameters, bulk moduli, heats of formation, and band gaps. The results indicate that the hybrid functionals indeed often improve the description of these properties, but in several cases the results are not yet on par with standard gradient corrected functionals. This concerns in particular metallic systems for which the bandwidth and exchange splitting are seriously overestimated.

1.
J. P.
Perdew
and
K.
Schmidt
, in
Density Functional Theory and its Applications to Materials
, edited by
V.
van Doren
,
C.
van Alsenoy
, and
P.
Geerlings
(
AIP
,
Melville, NY
,
2001
).
2.
3.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
4.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
5.
J.
Muscat
,
A.
Wander
, and
N. M.
Harrison
,
Chem. Phys. Lett.
342
,
397
(
2001
).
6.
T.
Bredow
and
A. R.
Gerson
,
Phys. Rev. B
61
,
5194
(
2000
).
7.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
8.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
121
,
1187
(
2004
).
9.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
10.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
11.
J.
Paier
,
R.
Hirschl
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
122
,
234102
(
2005
).
12.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
13.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
);
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
14.
F.
Gygi
and
A.
Baldereschi
,
Phys. Rev. B
34
,
4405
(
1986
).
15.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
17.
M.
Ernzerhof
,
Chem. Phys. Lett.
263
,
499
(
1996
).
18.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
12129
(
2003
).
19.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
1068
(
2003
).
20.
R. D.
Adamson
,
J. P.
Dombroski
, and
P. M. W.
Gill
,
Chem. Phys. Lett.
254
,
329
(
1996
).
21.
P. M. W.
Gill
and
R. D.
Adamson
,
Chem. Phys. Lett.
261
,
105
(
1996
).
22.
A.
Savin
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), p.
327
.
23.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
24.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
25.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
26.
J. G.
Ángyán
,
I. C.
Gerber
, and
M.
Marsman
(unpublished).
27.
G.
Kresse
and
J.
Hafner
,
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
28.
F. D.
Murnaghan
,
Proc. Natl. Acad. Sci. U.S.A.
30
,
244
(
1944
).
29.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
30.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
,
16223
(
1994
).
31.
P.
Blaha
,
K.
Schwarz
,
G. K. H.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
, WIEN2K,
an augmented plane wave+local orbitals program for calculating crystal properties
,
Vienna University of Technology
, Vienna,
2001
, ISBN 3-9501031-1-2.
32.
E.
Sjöstedt
,
L.
Nordström
, and
D. J.
Singh
,
Solid State Commun.
114
,
15
(
2000
).
33.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
Phys. Rev. B
69
,
075102
(
2004
).
34.
NIST-JANAF Thermochemical Tables
, edited by
M. W.
Chase
, Jr.
(
AIP
,
New York
,
1998
).
35.
Numerical Data and Functional Relationships in Science and Technology
, Landolt-Börnstein, New Series, Group III, Vols.
17
and
22
, Pt. A, edited by
K.-H.
Hellwege
,
O.
Madelung
,
M.
Schulz
, and
H.
Weiss
(
Springer-Verlag
,
New York
,
1982
).
36.
M.
Walkowsky
and
R.
Braunstein
,
Phys. Rev. B
5
,
497
(
1972
).
37.
J. E.
Ortega
and
F. J.
Himpsel
,
Phys. Rev. B
47
,
2130
(
1993
).
38.
R. R.
Zucca
,
J. P.
Walter
,
Y. R.
Shen
, and
M. L.
Cohen
,
Solid State Commun.
8
,
627
(
1970
).
39.
R.
Hulthén
and
N. G.
Nilsson
,
Solid State Commun.
18
,
1341
(
1976
).
40.
D.
Straub
,
L.
Ley
, and
F. J.
Himpsel
,
Phys. Rev. Lett.
54
,
142
(
1985
).
41.
S.
Adachi
,
Optical Properties of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information
(
Kluwer Academic
,
Dordrecht
,
1999
).
42.
R. T.
Poole
,
J.
Liesegang
,
R. C. G.
Leckey
, and
J. G.
Jenkin
,
Phys. Rev. B
11
,
5190
(
1975
).
43.
R. J.
Magyar
,
A.
Fleszar
, and
E. K. U.
Gross
,
Phys. Rev. B
69
,
045111
(
2004
).
44.
S.
Massidda
,
M.
Posternak
, and
A.
Baldereschi
,
Phys. Rev. B
48
,
5058
(
1993
).
45.
F.
Aryasetiawan
and
O.
Gunnarsson
,
Rep. Prog. Phys.
61
,
237
(
1998
).
46.
Photoemission in Solids II, Case studies
,
Topics in Applied Physics
Vol.
27
, edited by
L.
Ley
and
M.
Cardona
(
Springer
,
New York
,
1979
).
You do not currently have access to this content.