We report the implementation of Pipek-Mezey [J. Chem. Phys.90, 4916 (1989)] localization of molecular orbitals in the framework of a four-component relativistic molecular electronic structure theory. We have used an exponential parametrization of orbital rotations which allows the use of unconstrained optimization techniques. We demonstrate the strong basis set dependence of the Pipek-Mezey localization criterion and how it can be eliminated. We have employed localization in conjunction with projection analysis to study the bonding in the water molecule and its heavy homologues. We demonstrate that in localized orbitals the repulsion between hydrogens in the water molecule is dominated by electrostatic rather than exchange interactions and that freezing the oxygen 2s orbital blocks polarization of this orbital rather than hybridization. We also point out that the bond angle of the water molecule cannot be rationalized from the potential energy alone due to the force term of the molecular virial theorem that comes into play at nonequilibrium geometries and which turns out to be crucial in order to correctly reproduce the minimum of the total energy surface. In order to rapidly assess the possible relativistic effects we have carried out the geometry optimizations of the water molecule at various reduced speed of light with and without spin-orbit interaction. At intermediate speeds, the bond angle is reduced to around 90°, as is known experimentally for H2S and heavier homologues, although our model of ultrarelativistic water by construction does not allow any contribution from d orbitals to bonding. At low speeds of light the water molecule becomes linear which is in apparent agreement with the valence shell electron pair repulsion (VSEPR) model since the oxygen 2s12 and 2p12 orbitals both become chemically inert. However, we show that linearity is brought about by the relativistic stabilization of the (n+1)s orbital, the same mechanism that leads to an electron affinity for eka-radon. Actual calculations on the series H2X (X=Te, Po, eka-Po) show the spin-orbit effects for the heavier species that can be rationalized by the interplay between SO-induced bond lengthening and charge transfer. Finally, we demonstrate that although both the VSEPR and the more recent ligand close packing model are presented as orbital-free models, they are sensitive to orbital input. For the series H2X (X=O, S, Se, Te) the ligand radius of the hydrogen can be obtained from the covalent radius of the central atom by the simple relation rlig(H)=0.67rcov(X)+27 (in picometers).

1.
J. F.
Ogilvie
,
J. Chem. Educ.
67
,
280
(
1990
).
2.
R. S.
Mulliken
,
Phys. Rev.
41
,
49
(
1932
).
3.
R. S.
Mulliken
,
Science
157
,
13
(
1967
).
4.
L.
Bytautas
and
K.
Ruedenberg
,
Mol. Phys.
100
,
757
(
2002
).
5.
S.
Saebø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
6.
S.
Saebø
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
7.
D.
Maynau
,
S.
Evangelisti
,
N.
Guihéry
,
C. J.
Calzado
, and
J. P.
Malrieu
,
J. Chem. Phys.
116
,
10060
(
2002
).
8.
M.
Schütz
,
H.-J.
Werner
,
R.
Lindh
, and
F. R.
Manby
,
J. Chem. Phys.
121
,
737
(
2004
).
9.
A.
Venkatnathan
,
A. B.
Szilva
,
D.
Walter
,
R. J.
Gdanitz
, and
E. A.
Carter
,
J. Chem. Phys.
120
,
1693
(
2004
).
10.
B. L.
van der Waerden
, in
Theoretical Physics in the Twentieth Century
, edited by
M.
Fierz
and
V. F.
Weisskopf
(
Intersciences
,
New York
,
1960
), p.
199
.
11.
12.
A.
Szabo
,
J. Chem. Educ.
46
,
679
(
1969
).
13.
C. J.
Cramer
,
Essentials of Computational Chemistry
(
Wiley
,
Chichester
,
2002
).
14.
P. A.
Christiansen
and
K. S.
Pitzer
,
J. Chem. Phys.
74
,
1162
(
1981
).
15.
P.
Hafner
,
P.
Habitz
,
Y.
Ishikawa
,
E.
Wechsel-Trakowski
, and
W. H. E.
Schwarz
,
Chem. Phys. Lett.
80
,
311
(
1981
).
16.
T.
Saue
,
K.
Fægri
, and
O.
Gropen
,
Chem. Phys. Lett.
263
,
360
(
1996
).
17.
K.
Fagri
and
T.
Saue
,
J. Chem. Phys.
115
,
2456
(
2001
).
18.
C.
Bae
,
Y.-K.
Han
, and
Y. S.
Lee
,
J. Phys. Chem. A
107
,
852
(
2003
).
19.
Y.-K.
Han
and
Y. S.
Lee
,
J. Phys. Chem. A
103
,
1104
(
1999
).
20.
Y.-K.
Han
,
C.
Bae
, and
Y. S.
Lee
,
J. Chem. Phys.
110
,
8969
(
1999
).
21.
Y.-K.
Han
,
C.
Bae
,
S.-K.
Son
, and
Y. S.
Lee
,
J. Chem. Phys.
112
,
2684
(
2000
).
22.
C. S.
Nash
and
B. E.
Bursten
,
Angew. Chem., Int. Ed.
38
,
151
(
1999
).
23.
C. S.
Nash
and
B. E.
Bursten
,
J. Phys. Chem. A
103
,
402
(
1999
).
24.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
105
,
6505
(
1996
).
25.
C. S.
Nash
and
B. E.
Bursten
,
J. Phys. Chem. A
103
,
632
(
1999
).
26.
J. G.
Snijders
and
P.
Pyykkö
,
Chem. Phys. Lett.
75
,
5
(
1980
).
27.
W. H. E.
Schwarz
,
S. Y.
Chu
, and
F.
Mark
,
Mol. Phys.
50
,
603
(
1983
).
28.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
29.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev. (Washington, D.C.)
88
,
899
(
1988
).
30.
R.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
31.
K. B.
Wiberg
and
P. R.
Rablen
,
J. Comput. Chem.
14
,
1504
(
1993
).
32.
F.
Jensen
,
Introduction to Computational Chemistry
(
Wiley
,
Chichester
,
1999
).
33.
P. O.
Löwdin
,
Adv. Quantum Chem.
5
,
185
(
1970
).
34.
C. F.
Guerra
,
J. W.
Handgraaf
,
E. J.
Baerends
, and
F. M.
Bickelhaupt
,
J. Comput. Chem.
25
,
189
(
2004
).
35.
H.
Hollenstein
,
R. R.
Marquardt
,
M.
Quack
, and
M. A.
Suhm
,
J. Chem. Phys.
101
,
3588
(
1994
).
36.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
37.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
38.
J.
Lennard-Jones
and
J. A.
Pople
,
Proc. R. Soc. London, Ser. A
202
,
166
(
1950
).
39.
C.
Edmiston
and
K.
Ruedenberg
,
Rev. Mod. Phys.
35
,
457
(
1963
).
40.
T.
Saue
and
H. J.
Aa Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
41.
G.
Berghold
,
C. J.
Mundy
,
A. H.
Romero
,
J.
Hutter
, and
M.
Parinello
,
Phys. Rev. B
61
,
10040
(
2000
).
42.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
43.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Chem. Phys.
98
,
11623
(
1994
).
44.
H. J.
Aa. Jensen
,
T.
Saue
,
L.
Visscher
 et al., DIRAC, a relativistic ab initio electronic structure program, Release DIRAC04.0 (
2004
); http://dirac.chem.sdu.dk
45.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
46.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
,
3996
(
2000
).
47.
K.
Faegri
,
Theor. Chem. Acc.
105
,
252
(
2001
).
48.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
49.
O.
Fossgaard
,
O.
Gropen
,
M.
Corral Valero
, and
T.
Saue
,
J. Chem. Phys.
118
,
10418
(
2003
).
50.
L.
Visscher
,
Theor. Chem. Acc.
98
,
68
(
1997
).
51.
M.
Dolg
, in
Relativistic Electronic Structure Theory—Part 1. Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
), p.
523
.
52.
P.
Pyykkö
,
Chem. Rev. (Washington, D.C.)
88
,
563
(
1988
).
53.
G.
Gamow
, Mr. Tompkins in Wonderland: Or, Stories of c, G, and h (
Macmillan
,
New York
,
1940
).
54.
J. H.
Van Vleck
and
A.
Sherman
,
Rev. Mod. Phys.
7
,
167
(
1935
).
55.
C. A.
Coulson
,
Proc. - R. Soc. Edinburgh, Sect. A
61
,
115
(
1941
).
56.
D. F.
Heath
and
J. W.
Linnett
,
Trans. Faraday Soc.
44
,
556
(
1948
).
57.
W.
Kutzelnigg
,
Angew. Chem., Int. Ed. Engl.
23
,
272
(
1984
).
58.
J.
Jarvie
,
W.
Willson
,
J.
Doolittle
, and
C.
Edmiston
,
J. Chem. Phys.
59
,
3020
(
1973
).
59.
J.-M.
Lévy-Leblond
,
Commun. Math. Phys.
6
,
286
(
1967
).
60.
R.
McWeeny
,
Coulson’s Valence
(
Oxford University Press
,
Oxford
,
1979
).
61.
K. B.
Wiberg
and
M. A.
Murcko
,
J. Mol. Struct.: THEOCHEM
169
,
355
(
1988
).
62.
R.
Ahlrichs
,
Chem. Unserer Zeit
14
,
18
(
1980
).
63.
L.
Pauling
,
The Nature of the Chemical Bond
(
Cornell University Press
,
Ithaca
,
1960
).
64.
J. A.
Pople
,
Proc. R. Soc. London, Ser. A
202
,
323
(
1950
).
65.
M.
Lehd
and
F.
Jensen
,
J. Comput. Chem.
12
,
1089
(
1991
).
66.
C.
Edmiston
and
K.
Ruedenberg
,
J. Phys. Chem.
68
,
1628
(
1964
).
67.
R. J.
Gillespie
and
R. S.
Nyholm
,
Q. Rev., Chem. Soc.
61
,
339
(
1957
).
68.
R. J.
Gillespie
and
P. L. A.
Popelier
,
Chemical Bonding and Molecular Geometry
(
Oxford University Press
,
New York
,
2001
).
69.
R. J.
Gillespie
and
I.
Hargittai
,
The VSEPR Model of Molecular Geometry
(
Allyn and Bacon
,
Boston
,
1991
).
70.
A.
Schmidekamp
,
D. W. J.
Cruickshank
,
S.
Skaarup
,
P.
Pulay
,
I.
Hargittai
, and
J. E.
Boggs
,
J. Am. Chem. Soc.
101
,
2002
(
1979
).
71.
R. J.
Gillespie
and
E. A.
Robinson
,
Chem. Soc. Rev.
34
,
396
(
2005
).
72.
E. A.
Robinson
and
R. J.
Gillespie
,
Inorg. Chem.
43
,
2318
(
2004
).
73.
R. J.
Gillespie
and
E. A.
Robinson
, in
I.
Hargittai
and
M.
Hargittai
,
Advances in Molecular Structure Research
(
JAI Press
, London,
1998
), Vol.
4
, p.
1
.
74.
http://www.webelements. com
75.
J. C.
Slater
,
J. Chem. Phys.
41
,
3199
(
1964
).
76.
E.
Eliav
,
U.
Kaldor
,
Y.
Ishikawa
, and
P.
Pyykkö
,
Phys. Rev. Lett.
77
,
5350
(
1996
).
77.
M.
Kaupp
,
Angew. Chem., Int. Ed. Engl.
40
,
3534
(
2001
).
78.
C. A.
Mayhew
and
J. P.
Connerade
,
J. Phys. B
19
,
3493
(
1986
).
79.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem.
S23
,
199
(
1989
).
80.
T.
Saue
,
Adv. Quantum Chem.
48
,
383
(
2005
).
81.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
,
Comput. Phys. Commun.
55
,
425
(
1989
).
You do not currently have access to this content.