The effects of confinement on the order-disorder transition of diblock copolymer melts are studied theoretically. Confinements are realized by restricting diblock copolymers in finite spaces with different geometries (slabs, cylinders, and spheres). Within the random phase approximation, the correlation functions are calculated using the eigenvalues and eigenfunctions of the Laplacian operator 2 in the appropriate geometries. This leads to a size-dependent scattering function, and the minimum of the inverse scattering function determines the spinodal point of the homogeneous phase. For diblock copolymers confined in a slab or in a cylindrical nanopore, the spinodal point of the homogeneous phase (χN)s is found to be independent of the confinement. On the other hand, for diblock copolymers confined in a spherical nanopore, (χN)s depends on the confinement and it oscillates as a function of the radius of the sphere. Further understanding of the finite-size effects is provided by examining the fluctuation modes using the Landau-Brazovskii model.

1.
F. S.
Bates
and
G. H.
Fredrickson
,
Phys. Today
52
,
32
(
1999
).
2.
I. W.
Hamley
,
The Physics of Block Copolymers
(
Oxford University Press
,
Oxford
,
1998
).
3.
M. W.
Matsen
,
J. Phys.: Condens. Matter
14
,
R21
(
2002
).
4.
M. W.
Matsen
and
M.
Schick
,
Phys. Rev. Lett.
72
,
2660
(
1994
).
5.
M. S.
Turner
,
Phys. Rev. Lett.
69
,
1788
(
1992
).
6.
D. G.
Walton
,
G. J.
Kellogg
,
A. M.
Mayes
,
P.
Lamboov
, and
T. P.
Russell
,
Macromolecules
27
,
6225
(
1994
).
7.
M. W.
Matsen
,
J. Chem. Phys.
106
,
7781
(
1997
).
8.
T. L.
Morkved
and
H. M.
Jaeger
,
Europhys. Lett.
40
,
643
(
1997
).
9.
G. T.
Pickett
and
A. C.
Balazs
,
Macromolecules
30
,
3097
(
1997
).
10.
T.
Geisinger
,
M.
Müller
, and
K.
Binder
,
J. Chem. Phys.
111
,
5241
(
1999
).
11.
H. P.
Huinink
,
J. C. M.
Brokken-Zijp
,
M. A.
Van Dijk
, and
G. J. A.
Sevink
,
J. Chem. Phys.
112
,
2452
(
2000
).
12.
A.
Knoll
,
A.
Horvat
,
K. S.
Lyakhova
,
G.
Krausch
,
G. J. A.
Sevink
,
A. V.
Zvelindovsky
, and
R.
Magerle
,
Phys. Rev. Lett.
89
,
035501
1
(
2002
).
13.
H.
Xiang
,
K.
Shin
,
T.
Kim
,
S. I.
Moon
,
T. J.
McCarthy
, and
T. P.
Russell
,
Macromolecules
37
,
5660
(
2004
).
14.
W.
Li
,
R. A.
Wickham
, and
R. A.
Garbary
,
Macromolecules
39
,
806
(
2006
).
15.
A.-C.
Shi
,
J.
Noolandi
, and
R. C.
Desai
,
Macromolecules
29
,
6487
(
1996
).
16.
C.
Yeung
,
A.-C.
Shi
,
J.
Noolandi
, and
R. C.
Desai
,
Macromol. Theory Simul.
5
,
291
(
1996
).
17.
M.
Laradji
,
A.-C.
Shi
,
J.
Noolandi
, and
R. C.
Desai
,
Macromolecules
30
,
3242
(
1997
).
18.
M.
Laradji
,
A.-C.
Shi
,
R. C.
Desai
, and
J.
Noolandi
,
Phys. Rev. Lett.
78
,
2577
(
1997
).
19.
A.-C.
Shi
,
J. Phys.: Condens. Matter
11
,
10183
(
1999
).
20.
S. A.
Brazovskii
,
Sov. Phys. JETP
41
,
85
(
1975
).
21.
E. I.
Kats
,
V. V.
Lebedev
, and
A. R.
Muratov
,
Phys. Rep.
228
,
1
(
1993
).
22.
V. E.
Podneks
and
I. W.
Hamley
,
JETP Lett.
64
,
617
(
1996
).
23.
Y.
Tsori
and
D.
Andelman
,
Europhys. Lett.
53
,
722
(
2001
).
24.
Y.
Tsori
and
D.
Andelman
,
Eur. Phys. J. E
5
,
605
(
2001
).
25.
L.
Leibler
,
Macromolecules
13
,
1602
(
1980
).
26.
T.
Ohta
and
K.
Kawasaki
,
Macromolecules
19
,
2621
(
1986
).
27.
G. H.
Fredrickson
and
E.
Helfand
,
J. Chem. Phys.
87
,
697
(
1987
).
You do not currently have access to this content.