The rotation and translation block (RTB) method of Durand et al. [Biopolymers34, 759 (1994)] and Tama et al. [Proteins41, 1 (2000)] provides an appealing way to calculate low-frequency normal modes of large biomolecules by restricting the space of motions to exclude internal motions of preselected rigid fragments within the molecule. These fragments are modeled essentially as rigid bodies and the need to calculate high-frequency relative motions of the atoms that form them is obviated in a natural way. Here we extend the RTB approach into a method for computing the classical (Newtonian) dynamics of a biomolecule, or any large molecule, with effective rigid-body constraints applied to a prechosen set of internal molecular fragments. This method, to be termed RTB dynamics, is easy to implement, conserves the total energy of the system, does not require the construction of the matrix of second spatial derivatives of the potential-energy function (Hessian matrix), and can be used to compute the classical dynamics of a system moving in an arbitrary anharmonic force field. An elementary numerical application to signal propagation in the small membrane-bound polypeptide gramicidin-A is presented for illustration purposes.

1.
M.
Karplus
and
J. A.
McCammon
,
Nat. Cell Biol.
9
,
646
(
2002
).
2.
B.
Hille
,
Ion Channels of Excitable Membranes
, 3rd ed. (
Sinaur Associates, Inc.
,
Sunderland
,
2001
).
3.
M. S.P.
Sansom
,
I. H.
Shrivastava
,
K. M.
Ranatunga
, and
G. R.
Smith
,
Trends Biochem. Sci.
25
,
368
(
2000
).
4.
I. H.
Shrivastava
and
M. S.P.
Sansom
,
Biophys. J.
78
,
557
(
2000
).
5.
P. S.
Crozier
,
R. L.
Rowley
,
N. B.
Holladay
,
D.
Henderson
, and
D. D.
Busath
,
Phys. Rev. Lett.
86
,
2467
(
2001
).
6.
A.
Aksimentiev
and
K.
Schulten
,
Biophys. J.
88
,
3745
(
2005
).
7.
H. M.
Cheng
and
R. D.
Coalson
,
J. Phys. Chem. B
109
,
488
(
2005
).
8.
P.
Graf
,
M. G.
Kurnikova
,
R. D.
Coalson
, and
A.
Nitzan
,
J. Phys. Chem. B
108
,
2006
(
2004
).
9.
S. H.
Chung
,
T. W.
Allen
, and
S.
Kuyucak
,
Biophys. J.
82
,
628
(
2002
).
10.
P.
Graf
,
A.
Nitzan
,
M. G.
Kurnikova
, and
R. D.
Coalson
,
J. Phys. Chem. B
104
,
12324
(
2000
).
11.
W.
Im
,
S.
Seefeld
, and
B.
Roux
,
Biophys. J.
79
,
788
(
2000
).
12.
S. Y.
Noskov
,
W.
Im
, and
B.
Roux
,
Biophys. J.
87
,
2299
(
2004
).
13.
S. H.
Chung
,
T. W.
Allen
, and
S.
Kuyucak
,
Biophys. J.
83
,
263
(
2002
).
14.
A.
Burykin
,
C. N.
Schutz
,
J.
Villa
, and
A.
Warshel
,
Proteins
47
,
265
(
2002
).
15.
C.
Grewer
,
Biophys. J.
77
,
727
(
1999
).
16.
T. M.
Lewis
,
P. R.
Schofield
, and
A. M.L.
McClellan
,
J. Physiol. (London)
549
,
361
(
2003
).
17.
N.
Matsubara
,
A. P.
Billington
, and
G. P.
Hess
,
Biochemistry
31
,
5507
(
1992
).
18.
N.
Unwin
,
Nature (London)
373
,
37
(
1995
).
19.
P. H.
Barry
and
J. W.
Lynch
,
IEEE Trans. Nanobiosci.
4
,
70
(
2005
).
20.
B.
Space
,
H.
Rabitz
, and
A.
Askar
,
J. Chem. Phys.
99
,
9070
(
1993
).
21.
M.
Ikeguchi
,
J. Comput. Chem.
25
,
529
(
2004
).
22.
A. E.
Cardenas
and
R.
Elber
,
Biophys. J.
85
,
2919
(
2003
).
23.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
New York
,
1955
).
24.
B. R.
Brooks
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U.S.A.
80
,
6571
(
1983
).
25.
B. R.
Brooks
,
D.
Janezic
, and
M.
Karplus
,
J. Comput. Chem.
16
,
1522
(
1995
).
26.
A.
Leach
,
Molecular Modeling, Principles and Applications
, 2nd ed. (
Pearson Education Limited
,
Harlow
,
2001
).
27.
A. R.
Atilgan
,
S. R.
Durell
,
R. L.
Jernigan
,
M. C.
Demirel
,
O.
Keskin
, and
I.
Bahar
,
Biophys. J.
80
,
505
(
2001
).
28.
F.
Tama
and
Y. H.
Sanejouand
,
Protein Eng.
14
,
1
(
2001
).
29.
30.
Q.
Cui
,
G.
Li
,
J.
Ma
, and
M.
Karplus
,
J. Mol. Biol.
340
,
345
(
2004
).
31.
P.
Durand
,
G.
Trinquier
, and
Y. H.
Sanejouand
,
Biopolymers
34
,
759
(
1994
).
32.
F.
Tama
,
F. X.
Gadea
,
O.
Marques
, and
Y. H.
Sanejouand
,
Proteins
41
,
1
(
2000
).
33.
G.
Li
and
Q.
Cui
,
Biophys. J.
83
,
2457
(
2002
).
34.
D. C.
Lay
,
Linear Algebra and Its Applications
, 3rd ed. (
Addison-Wesley
,
Reading, MA
,
2003
).
35.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
36.
H. M.
Chun
,
C. E.
Padilla
,
D. N.
Chin
 et al.,
J. Comput. Chem.
21
,
159
(
2000
).
37.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
, 3rd ed. (
Pergamon
,
Oxford, New York
,
1976
).
38.
A.
Mamonov
,
R. D.
Coalson
,
A.
Nitzan
, and
M.
Kurnikova
,
Biophys. J.
84
,
3646
(
2003
).
39.
A. S.
Arseniev
,
A. L.
Lomize
, and
V. Y.
Orekhov
,
Bioorg Khim.
18
,
182
(
1992
).
40.
D. A.
Case
,
D. A.
Pearlman
,
J. W.
Caldwell
 et al., AMBER7, University of California, San Francisco,
2002
.
41.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
42.
M. F.
Thorpe
,
M.
Lei
,
A. J.
Rader
,
D. J.
Jacobs
, and
L. A.
Kuhn
,
J. Mol. Graphics Modell.
19
,
60
(
2001
).
43.
M.
Delarue
and
Y. H.
Sanejouand
,
J. Mol. Biol.
320
,
1011
(
2002
).
44.
O.
Keskin
,
S. R.
Durell
,
I.
Bahar
,
R. L.
Jernigan
, and
D. G.
Covell
,
Biophys. J.
83
,
663
(
2002
).
45.
A.
Taly
,
M.
Delarue
,
T.
Grutter
,
M.
Nilges
,
N.
Le Novere
,
P. J.
Corringer
, and
J. P.
Changeux
,
Biophys. J.
88
,
3954
(
2005
).
46.
H.
Valadie
,
J. J.
Lacapcre
,
Y. H.
Sanejouand
, and
C.
Etchebest
,
J. Mol. Biol.
332
,
657
(
2003
).
47.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics Modell.
14
,
33
(
1996
).
You do not currently have access to this content.