Nuclear quantum mechanical effects have been examined for the proton transfer reaction catalyzed by triosephosphate isomerase, with the normal mode centroid path integral molecular dynamics based on the potential energy surface from the recently developed reaction path potential method. In the simulation, the primary and secondary hydrogens and the C and O atoms involving bond forming and bond breaking were treated quantum mechanically, while all other atoms were dealt classical mechanically. The quantum mechanical activation free energy and the primary kinetic isotope effects were examined. Because of the quantum mechanical effects in the proton transfer, the activation free energy was reduced by 2.3kcalmol in comparison with the classical one, which accelerates the rate of proton transfer by a factor of 47.5. The primary kinetic isotope effects of kHkD and kHkT were estimated to be 4.65 and 9.97, respectively, which are in agreement with the experimental value of 4±0.3 and 9. The corresponding Swain-Schadd exponent was predicted to be 3.01, less than the semiclassical limit value of 3.34, indicating that the quantum mechanical effects mainly arise from quantum vibrational motion rather than tunneling. The reaction path potential, in conjunction with the normal mode centroid molecular dynamics, is shown to be an efficient computational tool for investigating the quantum effects on enzymatic reactions involving proton transfer.

1.
R. P.
Bell
,
The Tunnel Effects in Chemistry
(
Chapman and Hall
,
London
,
1980
).
2.
B. J.
Bahnson
and
J. P.
Klinman
,
Methods Enzymol.
249
,
373
(
1995
).
3.
J. P.
Klinman
,
Trends Biochem. Sci.
14
,
368
(
1989
).
4.
J. P.
Klinman
,
Pure Appl. Chem.
75
,
601
(
2003
).
5.
A.
Kohen
and
J. P.
Klinman
,
Chem. Biol.
6
,
R191
(
1999
).
6.
A.
Kohen
and
J. P.
Klinman
,
Acc. Chem. Res.
31
,
397
(
1998
).
7.
M. J.
Sutcliffe
and
N. S.
Scrutton
,
Eur. J. Biochem.
269
,
3096
(
2002
).
8.
M. H.
Olsson
,
P. E. M.
Siegbahn
, and
A.
Warshel
,
J. Am. Chem. Soc.
126
,
2820
(
2004
).
9.
J. K.
Hwang
and
A.
Warshel
,
J. Am. Chem. Soc.
118
,
11745
(
1996
).
10.
S. R.
Billeter
,
S. P.
Webb
,
P. K.
Agarwal
,
A.
Iordanov
, and
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
123
,
11262
(
2001
).
11.
P. K.
Agarwal
,
S. R.
Billeter
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. B
106
,
3283
(
2002
).
12.
D. G.
Truhlar
,
J.
Gao
,
C.
Alhambra
,
M.
Garcia-Viloca
,
J.
Corchado
,
M. L.
Sanchez
, and
J.
Villa
,
Acc. Chem. Res.
35
,
341
(
2002
).
13.
C.
Alhambra
,
J.
Gao
,
J. C.
Corchado
,
J.
Villa
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
121
,
2253
(
1999
).
14.
Y.
Cha
,
C. J.
Murry
, and
J. P.
Klinamn
,
Science
243
,
1325
(
1989
).
15.
M. J.
Knapp
,
K.
Rickert
, and
J. P.
Klinman
,
J. Am. Chem. Soc.
124
,
3865
(
2002
).
16.
J.
Basran
,
M. J.
Sutcliffe
, and
N. S.
Scrutton
,
Biochemistry
38
,
3218
(
1999
).
17.
N.
Agrawal
,
B.
Hong
,
C.
Mihai
, and
A.
Kohen
,
Biochemistry
43
,
1998
(
2004
).
18.
W. A.
Francicco
,
M. J.
Knapp
,
N. J.
Blackburn
, and
J. P.
Klinman
,
J. Am. Chem. Soc.
124
,
8194
(
2002
).
19.
J. K.
Hwang
,
Z. T.
Chu
,
A.
Yadav
, and
A.
Warshel
,
J. Phys. Chem.
95
,
8445
(
1991
).
20.
J. K.
Hwang
and
A.
Warshel
,
J. Phys. Chem.
97
,
10053
(
1993
).
21.
A.
Thomas
,
D.
Jourand
,
J. C.
Bret
,
P.
Amara
, and
M. J.
Field
,
J. Am. Chem. Soc.
121
,
9693
(
1999
).
22.
C.
Alhambra
,
J. C.
Corchado
,
M. L.
Sanchez
,
M.
Garcia-Viloca
,
J.
Gao
, and
D. G.
Truhlar
,
J. Phys. Chem. B
105
,
11326
(
2001
).
23.
P. K.
Agarwal
,
S. R.
Billeter
,
P. T. R.
Rajagopalan
,
S. J.
Benkovic
, and
S.
Hammes-Schiffer
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
2794
(
2002
).
24.
S. P.
Webb
,
P. K.
Agarwal
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. B
104
,
8884
(
2000
).
25.
S. J.
Benkovic
and
S.
Hammes-Schiffer
,
Science
301
,
1196
(
2003
).
26.
M. E.
Tuckerman
, in
Quantum Simulations of Complex Many-Body Systems
,
NIC Series
Vol.
10
, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Muramatsu
(
John von Neumann Institute for Computing
,
Jülich
,
2002
), p.
269
.
27.
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
).
28.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
J. Chem. Phys.
104
,
5579
(
1996
).
29.
D.
Marx
,
M. E.
Tuckerman
, and
G. M.
Martyna
,
Comput. Phys. Commun.
118
,
166
(
1999
).
30.
M.
Pavese
,
S.
Jang
, and
G. A.
Voth
,
Parallel Comput.
26
,
1025
(
2000
).
31.
A.
Warshel
,
Computer Modeling of Chemical Reactions in Enzymes and Solutions
(
Wiley
,
New York
,
1991
).
32.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
33.
J.
Gao
,
Rev. Comput. Chem.
7
,
119
(
1995
).
34.
J.
Gao
,
P.
Amara
,
C.
Alhambra
, and
M. J.
Field
,
J. Phys. Chem. A
102
,
4714
(
1998
).
35.
Y.
Zhang
,
T.
Lee
, and
W.
Yang
,
J. Chem. Phys.
110
,
46
(
1999
).
36.
Y.
Zhang
,
J. Chem. Phys.
122
,
24114
(
2005
).
37.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comp. Chem.
11
,
700
(
1990
).
38.
H.
Liu
,
Y.
Zhang
, and
W.
Yang
,
J. Am. Chem. Soc.
122
,
6560
(
2000
).
39.
Y.
Zhang
,
H.
Liu
, and
W.
Yang
,
J. Chem. Phys.
112
,
3483
(
2000
).
40.
Z.
Lu
and
W.
Yang
,
J. Chem. Phys.
121
,
89
(
2004
).
41.
M.
Wang
,
Z.
Lu
, and
W.
Yang
,
J. Chem. Phys.
121
,
101
(
2004
).
42.
T. K.
Harris
,
R. N.
Cole
,
F. I.
Comer
, and
A. S.
Mildvan
,
Biochemistry
37
,
16828
(
1998
).
43.
W. C.
Alston
 II
,
M.
Kanska
, and
C. J.
Murray
,
Biochemistry
35
,
12873
(
1996
).
44.
J. R.
Knowles
and
W. J.
Albery
,
Acc. Chem. Res.
10
,
105
(
1977
).
45.
E. B.
Nickbarg
and
J. R.
Knowles
,
Biochemistry
27
,
5939
(
1988
).
46.
Q.
Cui
and
M.
Karplus
,
J. Am. Chem. Soc.
124
,
3093
(
2002
).
47.
M. A.
Collins
,
Theor. Chem. Acc.
108
,
313
(
2002
).
48.
M. E.
Tuckerman
and
A.
Hughes
, in
Classical and Quantum Dynamics in Condensed Phase Simulation
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), pp.
311
357
.
49.
R. P.
Feynman
,
Statistical Mechanics
(
Addison-Wesley
,
New York
,
1981
).
50.
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
).
51.
K.
Kinugawa
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
106
,
1154
(
1997
).
52.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
53.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
54.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
55.
G. A.
Voth
,
Adv. Chem. Phys.
93
,
135
(
1996
).
56.
G. A.
Voth
, in
Classical and Quantum Dynamics in Condensed Phase Simulation
,
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), pp.
647
666
.
57.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
).
58.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
5093
(
1994
).
59.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
60.
61.
G. A.
Voth
,
J. Phys. Chem.
97
,
8365
(
1993
).
62.
K.
Hinsen
and
B.
Roux
,
J. Chem. Phys.
106
,
3567
(
1997
).
63.
C.
Haydock
,
J. C.
Sharp
, and
F. G.
Prendergast
,
Biophys. J.
57
,
1269
(
1990
).
64.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
65.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 98, Gaussian, Inc., Pittsburgh PA,
1998
.
66.
J. W.
Ponder
, TINKER, Software Tools for Molecular Design, Version 3.6 (the most updated version for the TINKER program can be obtained from J. W. Ponder’s World Wide Web site at http://dasher.wustl.edu/tinker).
67.
X.
Li
,
H.
Liu
, and
W.
Yang
,
J. Chem. Phys.
120
,
8039
(
2004
).
68.
H.
Liu
,
Z.
Lu
,
G. A.
Cisneros
, and
W.
Yang
,
J. Chem. Phys.
121
,
697
(
2004
).
69.
G. A.
Cisneros
,
H.
Liu
,
Z.
Lu
, and
W.
Yang
,
J. Chem. Phys.
122
,
114502
(
2005
).
70.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
71.
T.
Mulders
,
P.
Kruger
,
W.
Swegat
, and
J.
Schlitter
,
J. Chem. Phys.
104
,
4869
(
1996
).
72.
J. P.
Rychaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
237
(
1977
).
73.
J.
Schlitter
and
P.
Klahn
,
J. Chem. Phys.
118
,
2057
(
2003
).
You do not currently have access to this content.