Mechanism of the ring-opening transformation in the photoexcited crystalline benzene is investigated on the femtosecond scale by a computational method based on the real-time propagation (RTP) time-dependent density functional theory (TDDFT). The excited-state dynamics of the benzene molecule is also examined not only for the distinction between the intrinsic properties of molecule and the intermolecular interaction but for the first validation using the vibration frequencies for the RTP-TDDFT approach. It is found that the vibration frequencies of the excited and ground states in the molecule are well reproduced. This demonstrates that the present method of time evolution using the Suzuki-Trotter-type split operator technique starting with the Franck-Condon state approximated by the occupation change of the Kohn-Sham orbitals is adequately accurate. For the crystalline benzene, we carried out the RTP-TDDFT simulations for two typical pressures. At both pressures, large swing of the C–H bonds and subsequent twist of the carbon ring occurs, leading to tetrahedral (sp3-like) C–H bonding. The ν4 and ν16 out-of-plane vibration modes of the benzene molecule are found mostly responsible for these motions, which is different from the mechanism proposed for the thermal ring-opening transformation occurring at higher pressure. Comparing the results between different pressures, we conclude that a certain increase of the intermolecular interaction is necessary to make seeds of the ring opening (e.g., radical site formation and breaking of the molecular character) even with the photoexcitation, while the hydrogen migration to fix them requires more free volume, which is consistent with the experimental observation that the transformation substantially proceeds on the decompression.

1.
A. H.
Zewail
,
Femtochemistry: Ultrafast Dynamics of the Chemical Bond
(
World Scientific
,
Singapore
,
1994
).
2.
T.
Kobayashi
,
T.
Saito
, and
H.
Ohtani
,
Nature (London)
414
,
531
(
2001
).
3.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
4.
E. K. U.
Gross
,
C. A.
Ullrich
, and
U. J.
Grossmann
, in
Density Functional Theory
, edited by
E. K. U.
Gross
and
R. M.
Dreizler
(
Plenum
,
New York
,
1995
), p.
149
.
5.
M.
Petersilka
,
U. J.
Gossmann
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
76
,
1212
(
1996
).
6.
M. E.
Casida
, in
Recent Developments and Applications in Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
).
7.
A.
Zangwill
and
P.
Soven
,
Phys. Rev. A
21
,
1561
(
1980
).
8.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
9.
K.
Yabana
and
G. F.
Bertsch
,
Phys. Rev. B
54
,
4484
(
1996
).
10.
K.
Yabana
and
G. F.
Bertsch
,
Int. J. Quantum Chem.
75
,
55
(
1999
).
11.
E. K. U.
Gross
and
W.
Kohn
,
Phys. Rev. Lett.
55
,
2850
(
1985
).
12.
N. T.
Maitra
and
K.
Burke
,
Phys. Rev. Lett.
89
,
023002
(
2002
).
13.
O.
Sugino
and
Y.
Miyamoto
,
Phys. Rev. B
59
,
2579
(
1999
).
14.
M.
Suzuki
,
J. Phys. Soc. Jpn.
61
,
L3015
(
1992
).
15.
Y.
Miyamoto
,
O.
Sugino
, and
Y.
Mochizuki
,
Appl. Phys. Lett.
75
,
2915
(
1999
).
16.
Y.
Miyamoto
,
A.
Rubio
, and
D.
Tománek
,
Phys. Rev. B
70
,
233408
(
2004
).
17.
A.
Castro
,
M. A. L.
Marques
,
J. A.
Alonso
,
G. F.
Bertsch
, and
A.
Rubio
,
Eur. Phys. J. D
28
,
211
(
2004
).
18.
L.
Ciabini
,
M.
Santoro
,
R.
Bini
, and
V.
Schettino
,
Phys. Rev. Lett.
88
,
085505
(
2002
).
19.
Ph.
Pruzan
,
J. C.
Chervin
,
M. M.
Thiery
,
J. P.
Itie
,
J. M.
Besson
,
J. P.
Forgerit
, and
M.
Revault
,
J. Chem. Phys.
92
,
6910
(
1990
).
20.
A. P.
Horsfield
,
D. R.
Bowler
,
A. J.
Fisher
,
T. N.
Todorov
, and
C. G.
Sánchez
,
J. Phys.: Condens. Matter
16
,
8251
(
2004
).
21.
N. L.
Doltsinis
and
D.
Marx
,
Phys. Rev. Lett.
88
,
166402
(
2002
).
22.
I.
Frank
,
J.
Hutter
,
D.
Marx
, and
M.
Parrinello
,
J. Chem. Phys.
108
,
4060
(
1998
).
23.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
24.
P. W.
Atkins
and
R. S.
Friedman
,
Molecular Quantum Mechanics
(
Oxford University Press
,
Oxford
,
1997
).
25.
L.
Huang
,
J. P.
Callan
,
E. N.
Glezer
, and
E.
Mazur
,
Phys. Rev. Lett.
80
,
185
(
1998
).
26.
M.
Hase
,
M.
Kitajima
,
S.
Nakashima
, and
K.
Mizoguchi
,
Phys. Rev. Lett.
88
,
067401
(
2001
).
27.
O.
Kitao
and
H.
Nakatsuji
,
J. Chem. Phys.
87
,
1169
(
1987
).
28.
G. H.
Atkinson
and
C. S.
Parmenter
,
J. Micromech. Microeng.
73
,
20
(
1978
).
29.
R. H.
Page
,
Y. R.
Shen
, and
Y. T.
Lee
,
J. Chem. Phys.
88
,
5362
(
1988
).
30.
J.
Hutter
,
J. Chem. Phys.
118
,
3928
(
2003
).
31.
M. M.
Thiery
and
J. M.
Leger
,
J. Chem. Phys.
89
,
4225
(
1988
).
32.
Simulation Tool for Atom TEchnology (STATE), released by
Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST)
.
33.
Y.
Tateyama
and
T.
Ohno
,
J. Phys.: Condens. Matter
14
,
10429
(
2002
).
34.
L.
Ciabini
,
M.
Santoro
,
R.
Bini
, and
V.
Schettino
,
J. Chem. Phys.
116
,
2928
(
2002
).
35.
L.
Ciabini
,
M.
Santoro
,
R.
Bini
, and
V.
Schettino
,
J. Chem. Phys.
115
,
3742
(
2001
).
36.
N.
Oyama
,
Y.
Tateyama
,
T.
Ohno
, and
Y.
Miyamoto
(unpublished).
You do not currently have access to this content.