We present SPOCK.CI, a selecting direct multireference spin-orbit configuration interaction (MRSOCI) program based on configuration state functions. It constitutes an extension of the spin-free density functional theory/multireference configuration interaction (DFT/MRCI) code by Grimme and Waletzke [J. Chem. Phys.111, 5645 (1999)] and includes spin-orbit interaction on the same footing with electron correlation. Key features of SPOCK.CI are a fast determination of coupling coefficients between configuration state functions, the use of a nonempirical effective one-electron spin-orbit atomic mean-field Hamiltonian, the application of a resolution-of-the-identity approximation to computationally expensive spin-free four-index integrals, and the use of an efficient multiroot Davidson diagonalization scheme for the complex Hamiltonian matrix. SPOCK.CI can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRSOCI). The application of these techniques and approximations makes it possible to compute spin-dependent properties of large molecules in ground and electronically excited states efficiently and with high confidence. Second-order properties such as phosphorescence rates are known to converge very slowly when evaluated perturbationally by sum-over-state approaches. We have investigated the performance of SPOCK.CI on these properties in three case studies on 4H-pyran-4-thione, dithiosuccinimide, and free-base porphin. In particular, we have studied the dependence of the computed phosphorescence lifetimes on various technical parameters of the MRSOCI wave function such as the size of the configuration space, selection of single excitations, diagonalization thresholds, etc. The results are compared to the outcome of extensive quasidegenerate perturbation theory (QDPT) calculations as well as experiment. In all three cases, the MRSOCI approach is found to be superior to the QDPT expansion and yields results in very good agreement with experimental findings. For molecules up to the size of free-base porphin, MRSOCI calculations can easily be run on a single-processor personal computer. Total CPU times for the evaluation of the electronic excitation spectrum and the phosphorescence lifetime of this molecule are below 40 h.

1.
I. P.
Grant
and
H. M.
Quiney
,
Relativistic Self-Consistent Fields
(
Elsevier
, Amsterdam,
2002
), vol.
1
, p.
107
.
2.
K. G.
Dyall
,
J. Chem. Phys.
100
,
2118
(
1994
).
3.
B.
Heß
and
C.
Marian
, in
Computational Molecular Spectroscopy
, edited by
P.
Jensen
and
P.
Bunker
(
Wiley
, Sussex,
2000
), pp.
169
219
.
4.
Relativistic Electronic Structure Theory
, edited by
P.
Schwerdtfeger
(
Elsevier
, Amsterdam,
2002
), Vol.
1
.
5.
M.
Kleinschmidt
, Ph.D. thesis,
Heinrich Heine University Düsseldorf
,
2005
.
6.
J. E.
Tatchen
, Ph.D. thesis,
Heinrich Heine University Düsseldorf
,
2005
.
7.
M.
Kleinschmidt
,
J.
Tatchen
, and
C. M.
Marian
,
J. Comput. Chem.
23
,
824
(
2002
).
8.
M.
Kleinschmidt
and
C. M.
Marian
,
Chem. Phys.
311
,
71
(
2005
).
9.
B. A.
Heß
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
10.
B.
Schimmelpfennig
, AMFI, an atomic spin-orbit integral program,
University of Stockholm
,
1996
.
11.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
12.
S. R.
Langhoff
and
C. W.
Kern
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
, New York,
1977
), Vol.
4
, pp.
381
437
.
13.
H.
Ågren
,
O.
Vahtras
, and
B.
Minaev
,
Adv. Quantum Chem.
27
,
71
(
1996
).
14.
O.
Vahtras
,
H.
Ågren
,
P.
Jørgensen
,
H. J.A.
Jensen
,
T.
Helgaker
, and
J.
Olsen
,
J. Chem. Phys.
97
,
9178
(
1992
).
15.
I.
Tunell
,
Z.
Rinkevicius
,
O.
Vahtras
,
P.
Salek
,
T.
Helgaker
, and
H.
Ågren
,
J. Chem. Phys.
119
,
11024
(
2003
).
16.
F.
Neese
,
J. Chem. Phys.
115
,
11080
(
2001
).
17.
O.
Christiansen
and
J.
Gaus
,
J. Chem. Phys.
116
,
6674
(
2002
).
18.
B. A.
Heß
,
R. J.
Buenker
,
C. M.
Marian
, and
S. D.
Peyerimhoff
,
Chem. Phys.
71
,
79
(
1982
).
19.
D. R.
Yarkony
,
J. Chem. Phys.
84
,
2075
(
1986
).
20.
S. J.
Hutter
, Ph.D. thesis,
University of Bonn
,
1994
.
21.
R. J.
Buenker
,
A. B.
Alekseyev
,
H.-P.
Liebermann
,
R.
Lingott
, and
G.
Hirsch
,
J. Chem. Phys.
108
,
3400
(
1998
).
22.
V.
Vallet
,
L.
Maron
,
C.
Teichteil
, and
J.-P.
Flament
,
J. Chem. Phys.
113
,
1391
(
2000
).
23.
S.
Yabushita
,
Z.
Zhang
, and
R. M.
Pitzer
,
J. Phys. Chem. A
103
,
5791
(
1999
).
24.
M.
Sjøvoll
,
O.
Gropen
, and
J.
Olsen
,
Theor. Chem. Acc.
97
,
301
(
1997
).
25.
T.
Fleig
,
J.
Olsen
, and
C. M.
Marian
,
J. Chem. Phys.
114
,
4775
(
2001
).
26.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
27.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
28.
R.
Ahlrichs
,
M.
Bär
,
H.-P.
Baron
 et al., TURBOMOLE, Version 5.6,
Universität Karlsruhe
,
2002
.
29.
O.
Vahtras
,
J.
Almöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
30.
K.
Andersson
,
M.
Barysz
,
A.
Bernhardsson
 et al., MOLCAS,
Lund’s University
.
31.
J.
Tatchen
and
C. M.
Marian
,
Chem. Phys. Lett.
313
,
351
(
1999
).
32.
D.
Danovich
,
C. M.
Marian
,
T.
Neuheuser
,
S. D.
Peyerimhoff
, and
S.
Shaik
,
J. Phys. Chem. A
102
,
5923
(
1998
).
33.
F.
Rakowitz
and
C. M.
Marian
,
Chem. Phys. Lett.
257
,
105
(
1996
).
34.
B. O.
Roos
and
P. E.M.
Siegbahn
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
, New York,
1977
), Vol.
3
, pp.
277
318
.
35.
R.
Samzow
and
B. A.
Heß
,
Chem. Phys. Lett.
184
,
491
(
1991
).
36.
R.
Samzow
,
B. A.
Heß
, and
G.
Jansen
,
J. Chem. Phys.
96
,
1227
(
1992
).
37.
R.
McWeeny
,
J. Chem. Phys.
42
,
1717
(
1965
).
38.

Note a typo in Table 2 of Ref. 37. The first case (S=Sa=Sb, Ma=M, Mb=M±1) should read C1=[12(S±M+1)(SM)]12.

39.

In the actual implementation always MS=S wave functions are employed, irrespective of the irreducible representation of the spatial part. Before multiplying the spatial integrals with the spin factor, the latter is converted to a matrix element of the appropriate Cartesian spin operator by means of the scaled 3j-symbol approach (Ref. 37).

40.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
41.
M.
Crouzeix
,
B.
Philippe
, and
M.
Sadkane
,
J. Sci. Comput.
15
,
62
(
1994
).
42.
W.
Butscher
and
W.
Kammer
,
J. Comput. Phys.
20
,
313
(
1976
).
43.
M.
Kleinschmidt
, Diploma thesis,
University of Bonn
,
1999
, www.thch.uni-bonn.de/tc/
44.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flanney
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
(
Cambridge University Press
, Cambridge,
1992
).
45.
R. W.
Wetmore
and
G. A.
Segal
,
Chem. Phys. Lett.
36
,
478
(
1975
).
46.
L. L.
Lohr
, Jr.
,
J. Chem. Phys.
45
,
1362
(
1966
).
47.
L.
Goodman
and
B. J.
Laurenzi
,
Adv. Quantum Chem.
4
,
153
(
1968
).
48.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
49.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
50.
F.
Furche
and
R.
Ahlrichs
,
J. Chem. Phys.
117
,
7433
(
2002
).
51.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
52.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
53.
N. J.
Turro
,
Modern Molecular Photochemistry
(
University Science Books
, Sausalito, CA,
1991
).
54.
M.
Klessinger
and
J.
Michl
,
Excited States and Photochemistry of Organic Molecules
(
VCH
, Weinheim,
1995
).
55.
M. R.
Taherian
and
A. H.
Maki
,
Chem. Phys. Lett.
96
,
541
(
1983
).
56.
A.
Safarzadeh-Amiri
,
R. E.
Verall
, and
R. P.
Steer
,
Can. J. Chem.
61
,
894
(
1983
).
57.
M.
Szymanski
,
R. P.
Steer
, and
A.
Maciejewski
,
Chem. Phys. Lett.
135
,
243
(
1987
).
58.
S. C.J.
Meskers
,
T.
Poloński
, and
H. M.
Dekkers
,
J. Phys. Chem.
99
,
1134
(
1995
).
59.
A.
Maciejewski
and
R. P.
Steer
,
Chem. Rev. (Washington, D.C.)
93
,
67
(
1993
).
60.
J.
Tatchen
,
M.
Kleinschmidt
,
C. M.
Marian
,
M.
Parac
, and
S.
Grimme
,
Z. Phys. Chem.
217
,
205
(
2003
).
61.
J.
Tatchen
,
M.
Waletzke
,
C. M.
Marian
, and
S.
Grimme
,
Chem. Phys.
264
,
245
(
2001
).
62.
A. T.
Gradyushko
and
M. P.
Tsvirko
,
Opt. Spectrosc.
31
,
291
(
1971
).
63.
W. G.
van Dorp
,
W. H.
Schoemaker
,
M.
Soma
, and
J. H.
van der Waals
,
Mol. Phys.
30
,
1701
(
1975
).
64.
J. G.
Radziszewski
,
J.
Waluk
,
M.
Nepraš
, and
J.
Michl
,
J. Phys. Chem.
95
,
1963
(
1991
).
65.
M.
Gouterman
and
G.-E.
Khalil
,
J. Mol. Spectrosc.
53
,
88
(
1974
).
66.
M. P.
Tsvirko
,
K. N.
Solovev
,
A. T.
Gradyushko
, and
S. S.
Dvornikov
,
Opt. Spectrosc.
38
,
400
(
1975
).
67.

The x axis passes through the N–H bonds of free-base porphin and the z axis is perpendicular to the molecular plane.

68.
O.
Loboda
,
I.
Tunnell
,
B.
Minaev
, and
H.
Ågren
,
Chem. Phys.
312
,
299
(
2005
).
69.
B.
Minaev
and
H.
Ågren
,
Chem. Phys.
315
,
215
(
2005
).
70.

In the original publication, this sublevel is denoted B2uz3 because the x and z axes had been interchanged.

71.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
72.

In metalloporphyrins of D4h symmetry, the latter two orbitals even form a degenerate pair (eg).

73.
D.
Sundholm
,
Phys. Chem. Chem. Phys.
2
,
2275
(
2000
).
74.
A.
Serrano-Andrés
,
M.
Merchan
,
M.
Rubio
, and
B. O.
Roos
,
Chem. Phys. Lett.
295
,
195
(
1998
).
75.
A.
Parusel
and
S.
Grimme
,
J. Porphyr. Phthalocyanines
5
,
1
(
2001
).
76.
L.
Edwards
,
D. H.
Dolphin
,
M.
Gouterman
, and
A. D.
Adler
,
J. Mol. Spectrosc.
38
,
16
(
1971
).
77.

For C being Hermitian, the matrix A has to be symmetric while B has to be skew symmetric. From this it easily follows that R is symmetric.

You do not currently have access to this content.