Here we report a detailed study on spectroscopy, structure, and orientational distribution, as well as orientational motion, of water molecules at the air/water interface, investigated with sum frequency generation vibrational spectroscopy (SFG-VS). Quantitative polarization and experimental configuration analyses of the SFG data in different polarizations with four sets of experimental configurations can shed new light on our present understanding of the air/water interface. Firstly, we concluded that the orientational motion of the interfacial water molecules can only be in a limited angular range, instead of rapidly varying over a broad angular range in the vibrational relaxation time as suggested previously. Secondly, because different vibrational modes of different molecular species at the interface has different symmetry properties, polarization and symmetry analyses of the SFG-VS spectral features can help the assignment of the SFG-VS spectra peaks to different interfacial species. These analyses concluded that the narrow 3693cm1 and broad 3550cm1 peaks belong to Cv symmetry, while the broad 3250 and 3450cm1 peaks belong to the symmetric stretching modes with C2v symmetry. Thus, the 3693cm1 peak is assigned to the free OH, the 3550cm1 peak is assigned to the singly hydrogen-bonded OH stretching mode, and the 3250 and 3450cm1 peaks are assigned to interfacial water molecules as two hydrogen donors for hydrogen bonding (with C2v symmetry), respectively. Thirdly, analysis of the SFG-VS spectra concluded that the singly hydrogen-bonded water molecules at the air/water interface have their dipole vector directed almost parallel to the interface and is with a very narrow orientational distribution. The doubly hydrogen-bonded donor water molecules have their dipole vector pointing away from the liquid phase.

1.
Water, A Comprehensive Treatise: The Physics and Physical Chemistry of Water
, edited by
F.
Franks
(
Plenum
,
New York
,
1972
).
2.
H.
Luecke
,
H. T.
Richter
, and
J. K.
Lanyi
,
Science
280
,
1934
(
1998
).
3.
M.
Tarek
and
D. J.
Tobias
,
Phys. Rev. Lett.
88
,
138101
(
2002
).
4.
D.
Gidalevitz
,
Z. Q.
Huang
, and
S. A.
Rice
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
2608
(
1999
).
5.
R. M.
Townsend
and
S. A.
Rice
,
J. Chem. Phys.
94
,
2207
(
1991
).
6.
7.
I.
Benjamin
,
Chem. Rev. (Washington, D.C.)
96
,
1449
(
1996
).
8.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
,
371
(
2000
).
9.
A.
Morita
and
J. T.
Hynes
,
J. Phys. Chem. B
106
,
673
(
2002
).
10.
A.
Perry
,
H.
Ahlborn
,
B.
Spacea
, and
P. B.
Moore
,
J. Chem. Phys.
118
,
8411
(
2003
).
11.
S.
Paul
and
A.
Chandra
,
Chem. Phys. Lett.
373
,
87
(
2003
).
12.
S.
Paul
and
A.
Chandra
,
Chem. Phys. Lett.
386
,
218
(
2004
).
13.
I.-F. W.
Kuo
and
C. J.
Mundy
,
Science
303
,
658
(
2004
).
14.
A.
Braslau
,
M.
Deutsch
,
P. S.
Pershan
,
A. H.
Weiss
,
J.
Als-Nielsen
, and
J.
Bohr
,
Phys. Rev. Lett.
54
,
114
(
1985
).
15.
A.
Braslau
,
P. S.
Pershan
,
G.
Swislow
,
B. M.
Ocko
, and
J.
Als-Nielsen
,
Phys. Rev. A
38
,
2457
(
1988
).
16.
H.
Yui
,
H.
Fujiwara
, and
T.
Sawada
,
Chem. Phys. Lett.
360
,
53
(
2002
).
17.
K. R.
Wilson
,
M.
Cavalleri
,
B. S.
Rude
,
R. D.
Schaller
,
A.
Nilsson
,
L. G. M.
Pettersson
,
N.
Goldman
,
T.
Catalano
,
J. D.
Bozek
, and
R. J.
Saykally
,
J. Phys.: Condens. Matter
14
,
L221
(
2002
).
18.
M. C.
Goh
,
J. M.
Hicks
,
K.
Kemnitz
,
G. R.
Pinto
,
K.
Bhattacharyya
,
K. B.
Eisenthal
, and
T. F.
Heinz
,
J. Phys. Chem.
92
,
5074
(
1988
).
19.
A. J.
Fordyce
,
W. J.
Bullock
,
A. J.
Timson
,
S.
Haslam
,
R. D.
Spencer-Smith
,
A.
Alexander
, and
J. G.
Frey
,
Mol. Phys.
99
,
677
(
2001
).
20.
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
70
,
2313
(
1993
).
21.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
,
Science
264
,
826
(
1994
).
22.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
72
,
238
(
1994
).
23.
M. G.
Brown
,
E. A.
Raymond
,
H. C.
Allen
,
L. F.
Scatena
, and
G. L.
Richmond
,
J. Phys. Chem. A
104
,
10220
(
2000
).
24.
M. J.
Shultz
,
C.
Schnitzer
, and
S.
Baldelli
,
Int. Rev. Phys. Chem.
19
,
123
(
2000
).
25.
X.
Wei
and
Y. R.
Shen
,
Phys. Rev. Lett.
86
,
4799
(
2001
).
26.
L. F.
Scatena
,
M. G.
Brown
, and
G. L.
Richmond
,
Science
292
,
908
(
2001
).
27.
G. L.
Richmond
,
Annu. Rev. Phys. Chem.
52
,
357
(
2001
).
28.
G. L.
Richmond
,
Chem. Rev. (Washington, D.C.)
102
,
2693
(
2002
).
29.
G. L.
Richmond
,
J. M.
Robinson
, and
V. L.
Shannon
,
Prog. Surf. Sci.
28
,
1
(
1988
).
30.
Y. R.
Shen
,
Annu. Rev. Phys. Chem.
40
,
327
(
1989
).
31.
Y. R.
Shen
,
Nature (London)
337
,
519
(
1989
).
32.
R. M.
Corn
and
D. A.
Higgins
,
Chem. Rev. (Washington, D.C.)
94
,
107
(
1994
).
33.
P. B.
Miranda
and
Y. R.
Shen
,
J. Phys. Chem. B
103
,
3292
(
1999
).
34.
K. B.
Eisenthal
,
Chem. Rev. (Washington, D.C.)
96
,
1343
(
1996
).
35.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
36.
Z.
Chen
,
D. H.
Gracias
, and
G. A.
Somorjai
,
Appl. Phys. B: Lasers Opt.
68
,
549
(
1999
).
37.
D. E.
Gragson
and
G. L.
Richmond
,
J. Phys. Chem. B
102
,
3847
(
1998
).
38.
I.
Benjamin
,
J. Phys. Chem. B
109
,
13711
(
2005
).
39.
S.
Woutersen
,
U.
Emmerichs
, and
H. J.
Bakker
,
Science
278
,
658
(
1997
).
40.
K. B.
Eisenthal
,
Acc. Chem. Res.
26
,
636
(
1993
).
42.
L. J.
Richter
,
T. P.
Petralli-Mallow
, and
J. C.
Stephenson
,
Opt. Lett.
23
,
1594
(
1998
).
43.
E. L.
Hommel
,
G.
Ma
, and
H. C.
Allen
,
Anal. Sci.
17
,
1
(
2001
).
44.
D. K.
Hore
,
J. L.
King
,
F. G.
Moore
,
D. S.
Alavi
,
M. Y.
Hamamoto
, and
G. L.
Richmond
,
Appl. Spectrosc.
58
,
1377
(
2004
).
45.
C. M.
Johnson
and
E.
Tyrode
,
Phys. Chem. Chem. Phys.
7
,
2635
(
2005
).
46.
Ekspla Co., Vilnius, Lithuania, http://www.ekspla.com;
Euroscan Co., Belgium, http://www.euroscan.be/
47.
Y. R.
Shen
,
Appl. Phys. B: Lasers Opt.
68
,
295
(
1999
).
48.
X.
Wei
,
S. C.
Hong
,
X. W.
Zhuang
,
T.
Goto
, and
Y. R.
Shen
,
Phys. Rev. E
62
,
5160
(
2000
).
49.
Y.
Rao
,
Y. S.
Tao
, and
H. F.
Wang
,
J. Chem. Phys.
119
,
5226
(
2003
).
50.
R.
Lu
,
W.
Gan
,
B. H.
Wu
,
H.
Chen
, and
H. F.
Wang
,
J. Phys. Chem. B
108
,
7297
(
2004
).
51.
R.
Lu
,
W.
Gan
,
B. H.
Wu
,
Z.
Zhang
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
14118
(
2005
).
52.
H. F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B. H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
53.
W.
Gan
,
B. H.
Wu
,
H.
Chen
,
Y.
Guo
, and
H. F.
Wang
,
Chem. Phys. Lett.
406
,
467
(
2005
).
54.
R.
Lu
,
W.
Gan
, and
H. F.
Wang
,
Chin. Sci. Bull.
48
,
2183
(
2003
);
R.
Lu
,
W.
Gan
, and
H. F.
Wang
,
Chin. Sci. Bull.
49
,
899
(
2004
).
55.
H. F.
Wang
,
Chin. J. Phys. Chem.
17
,
362
(
2004
).
56.
H.
Chen
,
W.
Gan
,
B. H.
Wu
,
D.
Wu
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
8053
(
2005
).
57.
H.
Chen
,
W.
Gan
,
R.
Lu
,
Y.
Guo
, and
H. F.
Wang
,
J. Phys. Chem. B
109
,
8064
(
2005
).
58.
H.
Chen
,
W.
Gan
,
B. H.
Wu
,
D.
Wu
,
Z.
Zhang
, and
H. F.
Wang
,
Chem. Phys. Lett.
408
,
284
(
2005
).
59.
V.
Ostroverkhov
,
G. A.
Waychunas
, and
Y. R.
Shen
,
Phys. Rev. Lett.
94
,
046102
(
2005
).
60.
H.
Goldstein
,
Classic Mechanics
(
Addison-Wesley
,
Reading MA
,
1980
), p.
147
.
61.
X.
Wei
, Ph.D. dissertation, Department of Physics,
University of California
, Berkeley,
2000
.
62.
C. M.
Johnson
,
E.
Tyrode
,
S.
Baldelli
,
M. W.
Rutland
, and
C.
Leygraf
,
J. Phys. Chem. B
109
,
321
(
2005
);
[PubMed]
E.
Tyrode
,
C. M.
Johnson
,
S.
Baldelli
,
C.
Leygraf
, and
M. W.
Rutland
,
J. Phys. Chem. B
109
,
329
(
2005
).
[PubMed]
63.
D. F.
Liu
,
G.
Ma
,
L. M.
Levering
, and
H. C.
Allen
,
J. Phys. Chem. B
108
,
2252
(
2004
).
64.
W.
Gan
,
D.
Wu
,
Z.
Zhang
,
Y.
Guo
, and
H. F.
Wang
,
Chin. J. Phys. Chem.
19
,
20
(
2006
).
65.
R. H.
Page
,
J. G.
Frey
,
Y. R.
Shen
, and
Y. T.
Lee
,
Chem. Phys. Lett.
106
,
373
(
1984
).
66.
The dangling OH bond at the (0001) face of the hexagonal ice (Ih) points straight up along the interface normal [
Phys. Rev. Lett.
86
,
1554
(
2001
)].
[PubMed]
Since air/water interface SFG spectra has icelike features as in SFG of the ice surface, it was natural to assume that the free OH bond orientation is centered along the interface normal with a broad distribution.
Y. R.
Shen
(private communication).
67.
A.
Luzar
and
D.
Chandler
,
Phys. Rev. Lett.
76
,
928
(
1996
).
68.
C. J.
Fecko
,
J. D.
Eaves
,
J. J.
Loparo
,
A.
Tokmakoff
, and
P. L.
Geissler
,
Science
301
,
1698
(
2003
).
69.
Y. L.
Yeh
,
C.
Zhang
,
H.
Held
,
A. M.
Mebel
,
X.
Wei
,
S. H.
Lin
, and
Y. R.
Shen
,
J. Chem. Phys.
114
,
1837
(
2001
).
70.
J. R.
Schewrer
, in
Advances In Infrared and Raman Spectroscopy
, edited by
R. J. H.
Clark
and
R. E.
Hester
(
Hyden
,
Philadelphia
,
1978
), Vol.
5
, p.
149
.
71.
L. F.
Scatena
and
G. L.
Richmond
,
Chem. Phys. Lett.
383
,
491
(
2004
).
72.
E. A.
Raymond
,
T. L.
Tarbuck
,
M. G.
Brown
, and
G. L.
Richmond
,
J. Phys. Chem. B
107
,
546
(
2003
).
73.
J. P.
Devlin
,
C.
Joyce
, and
V.
Buch
,
J. Phys. Chem. A
104
,
1974
(
2000
).
74.
E. C.
Brown
,
M.
Mucha
,
P.
Jungwirth
, and
D. J.
Tobias
,
J. Phys. Chem. B
109
,
7934
(
2005
).
75.
J.
Michl
and
E. W.
Thulstrup
,
Spectroscopy with Polarized Light
(
VCH
,
Weinheim
,
1995
).
76.
D. C.
Harris
and
M. D.
Bertolucci
,
Symmetry and Spectroscopy, An Intruduction to Vibrational and Electronic Spectroscopy
(
Dover
,
New York
,
1989
).
77.
M. V.
Thiel
,
E. D.
Becker
, and
G. C.
Pimental
,
J. Chem. Phys.
27
,
486
(
1957
).
78.
A. J.
Tursi
and
E. R.
Nixon
,
J. Chem. Phys.
52
,
1521
(
1970
).
79.
F.
Huisken
,
A.
Kulcke
,
C.
Laush
, and
J. M.
Lisy
,
J. Chem. Phys.
95
,
3924
(
1991
).
80.
S. J.
McGall
,
P. B.
Davies
, and
D. J.
Neivandt
,
J. Phys. Chem. B
108
,
16030
(
2004
).
81.
K.
Jaqaman
,
K.
Tuncay
, and
P. J.
Ortoleva
,
J. Chem. Phys.
120
,
926
(
2004
).
82.
V. V.
Zakharov
,
E. N.
Brodskaya
, and
A.
Laaksonen
,
Mol. Phys.
95
,
203
(
1998
).
83.
V. V.
Zakharov
,
E. N.
Brodskaya
, and
A.
Laaksonen
,
J. Chem. Phys.
107
,
10675
(
1997
).
84.
V. P.
Sokhan
and
D. J.
Tildesley
,
Mol. Phys.
92
,
625
(
1997
).
85.
R. S.
Taylor
,
L. X.
Dang
, and
B. C.
Garrett
,
J. Phys. Chem.
100
,
11720
(
1996
).
86.
K. A.
Motakabbir
and
M. L.
Berkowitz
,
Chem. Phys. Lett.
176
,
61
(
1991
).
87.
M. A.
Wilson
,
A.
Pohorille
, and
L. R.
Pratt
,
J. Phys. Chem.
91
,
4873
(
1987
).
88.
R. M.
Townsend
,
J.
Gryko
, and
S. A.
Rice
,
J. Chem. Phys.
82
,
4391
(
1985
).
89.
W. K.
Zhang
,
D. S.
Zheng
,
H. T.
Bian
,
Y.
Guo
, and
H. F.
Wang
,
J. Chem. Phys.
123
,
224713
(
2005
).
90.
P.
Jedlovsky
,
Á.
Vincze
, and
G.
Horvai
,
J. Chem. Phys.
117
,
2271
(
2002
).
91.
P.
Jedlovsky
,
Á.
Vincze
, and
G.
Horvai
,
Phys. Chem. Chem. Phys.
6
,
1874
(
2004
).
92.
M.
Matsumoto
and
Y.
Kataoka
,
J. Chem. Phys.
88
,
3233
(
1987
).
93.
B.
Yang
,
D. E.
Sullivan
, and
C. G.
Gray
,
J. Phys.: Condens. Matter
6
,
4823
(
1994
).
94.
S. B.
Zhu
,
T. G.
Fillingim
, and
G. W.
Robinson
,
J. Phys. Chem.
95
,
1002
(
1991
).
96.
X.
Wei
,
S. C.
Hong
,
A. I.
Lvovsky
,
H.
Hermann
, and
Y. R.
Shen
,
J. Phys. Chem. B
104
,
3349
(
2000
).
97.
H.
Hermann
,
A. I.
Lvovsky
,
X.
Wei
, and
Y. R.
Shen
,
Phys. Rev. B
66
,
205110
(
2002
).
98.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Phys. Rev. Lett.
66
,
1066
(
1991
).
99.
M. J.
Shultz
,
S.
Baldelli
,
C.
Schnitzer
, and
D.
Simonelli
,
J. Phys. Chem. B
106
,
5313
(
2002
).
100.
E. A.
Raymond
and
G. L.
Richmond
,
J. Phys. Chem. B
108
,
5051
(
2004
).
101.
P. B.
Petersen
,
J. C.
Johnson
,
K. P.
Knutsen
, and
R. J.
Saykally
,
Chem. Phys. Lett.
397
,
46
(
2004
).
102.
P. B.
Petersen
and
R. J.
Saykally
,
Chem. Phys. Lett.
397
,
51
(
2004
).
103.
P. B.
Petersen
and
R. J.
Saykally
,
J. Phys. Chem. B
109
,
7976
(
2005
).
104.
M.
Mucha
,
T.
Frigato
,
L. M.
Levering
,
H. C.
Allen
,
D. J.
Tobias
,
L. X.
Dang
, and
P.
Jungwirth
,
J. Phys. Chem. B
109
,
7617
(
2004
).
105.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
,
J. Chem. Phys.
96
,
997
(
1992
).
106.
C.
Hirose
,
H.
Yamamoto
,
H. N.
Akamatsu
, and
K.
Domen
,
J. Phys. Chem.
97
,
10064
(
1993
).
107.
W. F.
Murphy
,
Mol. Phys.
36
,
727
(
1978
).
You do not currently have access to this content.